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4 Interlude: Approximation

This section is a bit of an interlude; it’ll be a short bridge between section 3 on optimization,

and section 5 on integration.

In this section we want to talk a bit more about the idea of approximation. We introduced

this in section 4, when we talked about continuous approximation: if x ≈ a, we can estimate

f(x) ≈ f(a). We refined this a bit in section 2.1 and 2.6. The derivative allows us to estiamte

that f(x) ≈ f(a) + f ′(a)(x− a). But can we do even better?

4.1 Quadratic Approximation

In this class we’ve spent a lot of time on linear approximation: we can approximate a function

with its tangent line, which is the linear function most similar to our starting function. This

simplifies a lot of things, but is only an approximation.

f(x) ≈ f(a) + f ′(a)(x− a). (2)

How good this approximation is depends on two things. The first is the distance |x− a|;
the approximation is better when your goal point x is close to your starting point a. There

are other techniques (like Fourier series) that don’t have this limitation, but we won’t discuss

them in this course.

The other is the speed at which the derivative changes. If the derivative is constant,

your function is just a line and the “approximation” is perfect. But the faster the derivative

changes, the faster the function deviates from the line.

Thus we might try to get a better approximation using the second derivative, which tells

us how quickly the derivative is changing. So how can we do this?

We’re looking for some function g(x) so that

f(x) ≈ f(a) + f ′(a)(x− a) + g(a)(x− a)2.

(We want the linear approximation to be the same as (4), and we want the third derivative to

be zero, so the only thing that can change at all is the degree two term). Taking derivatives

of both sides gives us

f ′(x) ≈ f ′(a) + 2g(a)(x− a)

f ′′(x) ≈ 2g(a).
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Thus we set g(a) = f ′′(x)/2, and we get the equation

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2. (3)

This is the parabola that best approximates our function near a.

Example 4.1. Let’s again ask our old question: what is
√
5?

We use the function f(x) =
√
x and we compute f ′(x) = 1

2
√
x
and f ′′(x) = −1

4
√
x3
. Then

we have

f ′(4) =
1

4

f ′′(4) =
−1

32

f(x) ≈ f(4) + f ′(4)(x− 4) +
f ′′(4)

2
(x− 4)2

= 2 +
1

4
(x− 4)− 1

64
(x− 4)2

f(5) ≈ 2 +
1

4
− 1

64
= 2 +

15

64
≈ 2.23483.

We see we’ve slightly overcorrected: rather than being .014 too big, we’re now .0012 too

small.

Example 4.2. Compute the quadratic approximations of sin(x) and cos(x) centered at zero.

Estimate sin(.01) and cos(.01)? How does this relate to the Small Angle Approximation?

sin′(x) = cos(x)

sin′(0) = 1

sin′′(x) = − sin(x)

sin′′(0) = 0

sin(x) ≈ 0 + 1(x− 0) +
0

2
(x− 0)2 = x

sin(.01) ≈ .01.

Recall the small angle approximation told us that sin(x) ≈ x. Here we see that this is

not just a linear approximation, but in fact also the quadratic approximation; the reason the

small angle approximation worked so well is that it was correct ot second order.
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cos′(x) = − sin(x)

cos′(0) = 0

cos′′(x) = − cos(x)

cos′′(0) = −1

cos(x) ≈ 1 + 0(x− 0)− 1(x− 0)2 = 1− x2

2

cos(.01) ≈ .99995.

Example 4.3. Let g(x) = x4 − 3x3 +4x2 +4x− 2. Compute the quadratic approximations

at a = 0 and at a = −2. Compare them to g(x). Estimate g(−1.97).

g(0) = −2

g′(x) = 4x3 − 9x2 + 8x+ 4

g′(0) = 4

g′′(x) = 12x2 − 18x+ 8

g′′(0) = 8

g(x) ≈ −2 + 4(x− 0) +
8

x
x2 = 4x2 + 4x− 2.

Notice that this is just the lower-degree terms of our original polynomial!

g(−2) = 16 + 24 + 16− 8− 2 = 46

g′(x) = 4x3 − 9x2 + 8x+ 4

g′(−2) = −32− 24− 16 + 4 = −80

g′′(x) = 12x2 − 18x+ 8

g′′(−2) = 48 + 36 + 8 = 92

g(x) ≈ 46− 80(x+ 2) + 46(x+ 2)2

f(−1.97) ≈ 46− 80(.03) + 46(.009) = 43.6414.
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However, if we take h(x) = 4x2 + 4x− 2 and approximate near −2, we get

h(−2) = 6

h′(x) = 8x+ 4

h′(−2) = −12

h′′(x) = 8

h′′(−2) = 8

h(x) ≈ 6− 12(x+ 2) + 4(x+ 2)2 = 6− 12x− 24 + 4x2 + 16x+ 16

= 4x2 + 4x− 2 = h(x).

No matter where we center our approximation, the best quadratic approximation to our

parabola is our original parabola.

Example 4.4. Now let’s estimate 1.0125 using a quadratic approximation. We use the

function f(x) = (1 + x)25, and center our approximation at x = 0. (Equivalently we could

consider g(x) = x25 and center our approximation at x = 1; the way I set it up is a bit more

common).

We take f ′(x) = 25(1 + x)24 so f ′(0) = 25, and f ′′(x) = 25 · 24(1 + x)23 so f ′′(0) =

25 · 24 = 600. Then we have

f(x) ≈ 1 + 25(x− 0) +
600

2
(x− 0)2 = 1 + 25x+ 300x2

1.0125 = f(.01) ≈ 1 + 25 · .01 + 300 · .0001 = 1 + .25 + .03 = 1.28.

Since 1.0125 ≈ 1.28243 this is pretty good.

What if we move a bit farther? If we want to estimate 1.0425 we get

1.0425 = f(.04) ≈ 1 + 25 · .04 + 300 · .0016 = 1 + 1 + .48 = 2.48

while 1.0425 ≈ 2.66584. We’ve lost fidelity because our move away is bigger.

But while .4 is still much smaller than 1, this estimate is much worse than our estimate

of
√
5 from earlier. Why is this much worse? Linear are bad for two reasons: either because

x and a are far apart, or because the second derivative is large. Here we’ve taken care of the

second derivative, but we haven’t taken care of everything. Our quadratic approximations

will be bad when the third derivative is large.

Finally, let’s use this to estimate 225. We get

225 = f(1) ≈ 1 + 25 · 1 + 300 · 12 = 326.

But 225 = 33, 554, 432, so this is very far off. We see here even more problems with the

largeness of the higher derivatives.
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4.1.1 Cubics and Beyond: Taylor Series

We can carry this logic further. We can work out that if we want to match the first three

derivatives and get a cubic approximation, we get the formula

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 +

f ′′′(a)

3 · 2
(x− a)3.

More generally, we can get a degree-n polynomial approximation, called the Taylor poly-

nomial of degree n, with the formula

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 +

f ′′′(a)

3 · 2
(x− a)3 + · · ·+ f (n)(a)

n!
(x− a)n.

If a function is infinitely differentiable, we can take an infinite sum here and get the Taylor

series :

Tf (x, a) = f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n + . . . .

Most functions we’re interested in are equal to their own Taylor series. (Not all functions

are, though!) In particular, we can work out the following formulas:

sin(x) = x− x3

6
+

x5

120
− x7

7!
+ . . .

cos(x) = 1− x2

2
+

x4

24
− x6

720
+ . . .

ex = 1 + x+
x2

2
+

x3

6
+

x4

24
+ . . . .

Taylor series are extremely important in any sort of computational or advanced math,

and you will talk about them a lot more if you take Calculus II.

However, in practice, just like we rarely use third or fourth derivatives, we rarely use

approximations of degree higher than two. If the quadratic approximation doesn’t pick up

whatever you need to think about, we will do something else entirely.

4.2 Iterative Approximation: Newton’s Method

In section 2.6 we saw that there were two things that make a linear approximation work

better or worse. The first was the size of the second derivative; in section 4.1 we leveraged

the second derivative to improve our approximations.

To keep things simple, we’ll assume that we want to solve f(x) = 0. (If not, we can

just subtract our number y from both sides of the equation). If we know the value of f

and of f ′ at a point x0, then recall that by linear approximation we estimate that f(x1) =
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f(x0) + f ′(x0)(x1 − x0). Since we want f(x1) = 0, we set f(x1) = 0 and solve this equation

for x1, and get

x1 = x0 − (f(x0)/f
′(x0)).

In many conditions, we will get the result that x1 is closer to being a root of f than x0 is.

We can repeat this process to find x2, x3, etc., and ideally each will be a better estimate

than the previous estimate was. A good rule of thumb for when to stop: if you want five

decimal places of accuracy, you can stop when the nth step and the n + 1st step agree to

five decimal places.

This method does have limitations. First, we have to start with a guess x1 for our root

x. Second, if f ′(x1) is very close to zero, Newton’s method will work poorly if it works at all,

and we might have to pick a better guess. But it can be very useful for finding approximate

solutions to equations.

Example 4.5. Let’s approximate the square root of 5, one more time. First, we need to

turn this into finding a solution to an equation. We want to solve the equation x2 = 5, which

we can rewrite as f(x) = x2 − 5 = 0. We compute f ′(x) = 2x.

We need to pick a starting estimate, which should probably be x0 = 2. Then we have

f(x0) = −1, and f ′(x0) = 4. So we get

x1 = x0 −
f(x0)

f ′(x0)
= 2− −1

4
= 9/4 = 2.25.

You might notice that this is exactly what we got by doing a simple linear approximation.

So what did we get from this new method? Now we can iterate.

x2 = x1 −
f(x1)

f ′(x1)
= 9/4− 81/16− 5

9/2
= 161/72 ≈ 2.23611

x3 = x2 −
f(x2)

f ′(x2)
= 161/72− 1/5184

161/36
=

51851

23184
≈ 2.23607

Checking with a computer tells us that
√
5 ≈ 2.23607, so we’re now correct to five decimal

places.

Example 4.6. Let’s find a solution to x3 − x = 1. We need to write this as f(x) = 0, so

let’s take f(x) = x3 − x − 1. Then we have f ′(x) = 3x2 − 1, and we can guess x0 = 1 as a
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decent starting point, since f(1) = −1 is close to 0. Then we have

x1 = 1− f(1)

f ′(1)
= 1− −1

2
= 3/2

x2 =
3

2
− f(3/2)

f ′(3/2)
=

3

2
− 27/8− 3/2− 1

27/4− 1
= 31/23 ≈ 1.34783

x3 =
31

23
− f(31/23)

f ′(31/23)
=

31

23
− 1225/12167

2354
529

71749

54142
≈ 1.3252.

We can notice a couple of things here. the first is that the numerators f(xi) are getting

closer and closer to zero. This is what we should expect: we’re trying to get closer and closer

to a root of f .

Second, each successive step is smaller. From x0 to x1 we change by .5; from x1 to x2

we change by about 1.5; from x2 to x3 we change by about .02, which means we’re probably

within .02 of the true answer at x3.

Example 4.7. Suppose we want to find a solution to x5 + x2 + x − 1 = 0. If we take

f(x) = x5 + x2 + x− 1, then f(0) = −1 and f(1) = 2 so there must be at least one solution

to this equation. But a result from the field of Galois theory tells us that we cannot express

the solution exactly.

However, we can use Newton’s method. f(0) = −1 so it seems reasonable to start with

0 as a guessed root. We compute f ′(x) = 5x4 + 2x+ 1, and so if x0 = 0 we have

x1 = 0− f(0)

f ′(0)
= 0− −1

1
= 1

x2 = 1− f(1)

f ′(1)
= 1− 2

8
=

3

4

x3 =
3

4
− f(3/4)

f ′(3/4)
≈ .75− 563/1024

1045/256
=

643

1045
≈ .615311.

If we keep going, we see the true root is about x = .586544.
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