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6 Applications of Integrals

Now that we know how to compute integrals, we want to finish the course by talking about

why integrals are so useful. We’ll start with the idea of computing area, which was the

original motivation for integration; but we’ll see they also answer many other questions.

6.1 Finding Areas

Recall that we originally constructe the integral to find the area of some shape, in particular

of shapes that lie under the graph of some function. We can use the same tools to find the

area of a region that is not, properly speaking, the graph of one function.

The simplest (well, second-simplest) case is the case where we want the area of a region

that lies in between the graph of two functions. We can approximate area by drawing, as

before, a great many skinny rectangles which are approximately the right height to cover

our region. If our region lies in between two functions f and g, the combined area of our

rectangles is
n∑

i=1

(xi − xi−1)(f(x
∗
i )− g(x∗

i ))

and as the number of rectangles increases this approximation gets increasingly good. We say

the area of the region is

A = lim
n→+∞

n∑
i=1

(xi − xi−1)(f(x
∗
i )− g(x∗

i )).

You may recognize this formula as the integral of the function f − g; indeed, if we have a

region with x coordinates varying from a to b and y coordinates varying from g(x) to f(x),

then its area is
∫ b

a
(f(x)− g(x))x.

Remark 6.1. Remember that actual areas are always positive! The integral by itself computes

the “signed area”; if you want an actual area you must be careful to make sure you’re

integrating the correct function.

Example 6.2. Let’s start with a trivial example: what’s the area of a rectangle with base

3 and height 4? We know that the area of a rectangle is length times width, so the answer

should be 12. But we can also compute the area as
∫ 4

0
3 dx = 3x|40 = 12, which matches what

we expect.

Example 6.3. What is the area of the region between y = x3 and y = 1/x2 between x = 2

and x = 4?
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We have∫ 4

2

x3 − (1/x2) dx =

(
x4

4
+

1

x

)∣∣∣∣4
2

= (64 + 1/4)− (4 + 1/2) = 60− 1/4 = 239/4.

Sometimes (usually!) we need to have a visual idea of what our region looks like before

we can set up an appropriate integral.

Example 6.4. What is the area of the region bounded by y = x an y = x2?

After we draw a picture, we see that these two graphs enclose a region between x = 0

and x = 1, and that in that region, x ≥ x2. So we compute the integral∫ 1

0

x− x2 dx =

(
x2

2
− x3

3

)∣∣∣∣1
0

=
1

2
− 1

3
=

1

6
.

Example 6.5 (recitation). Compute the total area of the “valley” between two peaks of the

sine function.

We see that this area is the area of the region between y = 1 and y = sinx between π/2

and 5π/2. (There are other ways to set this up, but this way works). So we compute∫ 5π/2

π/2

1− sinx dx = x+ cos(x)|5π/2π/2 = (5π/2 + 0)− (π/2 + 0) = 2π.

Sometimes you have to break your region up into separate pieces/integrals

Example 6.6. What is the area of the region bounded by y = x2, y = 2− x, and y = 0?
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We sketch the region and see that we get a sort of collapsed triangle. We compute

A =

∫ 1

0

x2 dx+

∫ 2

1

(2− x) dx =
x3

3
|10 +

(
2x− x2

2

)∣∣∣∣2
1

=
1

3
− 0 + (4− 2)− (2− 1/2) =

5

6
.

We can also do the same problem another way. Notice that we might as well write

x =
√
y, x = 2 − y. So we can just as well integrate with respect to y—that is, draw our

rectangles stretching horizontally instead of vertically. We have

A =

∫ 1

0

(2− y)−√
y dy =

(
2y − y2

2
− 2

3
y3/2

)∣∣∣∣1
0

=

(
2− 1

2
− 2

3

)
− 0 =

5

6
.

As expected, we get the same answer.

We see here that we can set up these area integrals in two different ways: we can integrate

“with respect to x” or “with respect to y”. When we integrate with respect to x, we chop

our region up into tall, skinny rectangles, as we have been since the beginning of section 5.

This works well when we have a shape with straight-line boundaries to the left and right,

and can write the top and bottom curves as functions of x.

When we integrate with respect to y, we chop our region up into short wide rectangles.

This is the same basic process, but we’re looking at the picture from a different angle. It

works well when our shape has straight-line boundaries on the top and bottom, and we can

describe the left and right boundaries as functions of y.

Example 6.7. What is the area of the region between y2 = x+ 3 and y = x− 3?
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These curves intercept when y2 = y+6, which happens when y = 3 or y = −2, and thus

at (6, 3) and (1,−2). It’s more natural to integrate with respect to y, so we write

A =

∫ 3

−2

(y + 3)− (y2 − 3) dy =

∫ 3

−2

6 + y − y2 dy

=

(
6y +

y2

2
− y3

3

)∣∣∣∣3
−2

=

(
18 +

9

2
− 9

)
−
(
−12 + 2 +

8

3

)
=

27

2
+ 10− 8

3
=

125

6

Example 6.8. What is the area of the region bounded by y = x2 + 1, y = 17 − x2, and

x = 1?

We first draw the region, and see a sort of sideways triangle with a base at x = 1 and a

point at (
√
8, 9), with y varying from 1 to 17.

We have two options: integrate with respect to x, or with respect to y by writing x =
√
y − 1 and x =

√
17− y. The second involves breaking our region into two integrals, and
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gives us

A =

∫ 9

2

√
17− y − 1 dy +

∫ 16

9

√
17− y − 1 dy,

which is doable but pretty ugly.

Instead, if we integrate with respect to x, we get

A =

∫ √
8

1

(17− x2)− (x2 − 1) dx =

∫ √
8

1

18− 2x2 dx

= 18x− 2

3
x3
∣∣√8

1
= 36

√
2− 32

√
2/3− 18 + 2/3 =

76
√
2− 52

3
.

6.2 Physical and Economic Applications

At this point we’ve fully developed the theory of the integral, and answered the original

question about area we posed in section 5.1. But much like with the derivative, this tool is
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really flexible, and can answer many other questions than the original one we asked ourselves.

We can essentially divide integral applications into two categories. The most obvious

thing the integral does is that it adds stuff up. Remember we have∫ b

a

f(x) dx = lim
n→+∞

n∑
k=1

f (xk)∆x.

So if we have something we want to compute that looks like adding up a bunch of small

numbers, we can usually turn that into an integral.

Less obvious is that the integral represents a sort of multiplication. Here, we’re going to

emphasize that the things we’re summing up look like f(xk)∆x, and thus represent some sort

of product. In particular, we do an integral when we want to multiply two things together

but one of them is changing.

We saw this with area: in general area is “width times height” but for the irregular

shapes we’ve been studying, the height isn’t the same everywhere. So we chop it up into

a bunch of small pieces, and then on each one we pretend the height is constant so we can

multiply width by height, and then we add all the small pieces up at the end.

We’ll see examples of both of these ideas.

6.2.1 Economic Application: Consumer and Producer Surplus

Let’s start with an application that’s often closely tied to area. Economists like to talk about

the idea of consumer and producer surpluses, the amount of benefit the buyers and sellers

get from transacting. If I would be willing to buy a toy for $18 and you’d be willing to sell it

for $5, then that trade creates $13 of value. But who gets the value depends on the price—if

you sell for ten dollars, then you get $5 of value and I get $8, whereas if you sell for $15
then you get $10 and I get $2. Either way we’re both better off. My increase in value is

“consumer surplus”, yours is “producer surplus”, and the two together are total surplus.

But we really want to think about the total surplus in the market. If 100 people buy

toys, then there is some consumer surplus for each one, and some producer surplus for each

one. If we want to know the total consumer surplus, we have to add up all the individual

surpluses.

If everyone has the same surplus, this is easy. A hundred people value a toy at $18, and
buy it for $10. Each person gets $8 of surplus, so the total consumer surplus is $800. But

in reality, different people value the toy different amounts: maybe one person values it at

$25 and another person only values it at $12. Then we have a hundred different surpluses

to add up—which means we should use an integral.
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To think about theses sorts of markets, economists will often draw supply and demand

curves to describe a market. Conceptually, if you want to sell more goods you have to accept

a lower price—if you charge $15, the guy who values the toy at $25 will still buy it, but the

guy who values it at $12 won’t. We can write a demand function d(q), which tells you the

price at which people demand (are willing to buy) q toys.

Similarly, if you want to buy more goods you have to pay a higher price for them, so

more people are willing to sell; this gives a supply function s(q) that tells the price at which

people will supply q toys. The market clears at a price where these two quantities of goods

are equal, that is, when s(q) = d(q). (It might make more sense to write q as a function of

p, but in practice we usually write p as a function of q.)

We can draw a graph of this situation, which is the famous “supply curve” and “demand

curve”. But once we draw supply and demand curves, the total surplus is the area between

those curves. So we can use our approach of finding the area between two curves to compute

total surplus.

Example 6.9. Suppose the demand for a product is given by p = d(q) = 20− .05q and the

supply for the same product is given by p = s(q) = 2 + .0002q2. For both functions, q is the

quantity and p is the price, in dollars.

Then demand when d(q) = s(q), so 20− .05q = 2 + .0002q2 and thus we have .0002q2 +

.05q − 18 = 0. Using the quadratic formula, we get the solutions −450 and 200, so the

equilibrium happens when 200 units are produced, and plugging this back into either d or q

tells us the equilibrium price was $10.

Figure 6.1: Left: the supply and demand curves. Right: the equilibrium price is $10.
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What then is the surplus? The total surplus is∫ 200

0

d(q)− s(q) dq =

∫ 200

0

18− .05q − .0002q2 dq

= 18q − .025q2 − .0002

3
q3
∣∣∣0200

= 3600− 1000− 533.33 = 2066.67.

Thus the total surplus value created is a bit more than $2000.
But how is this surplus distributed? We can compute that the equilibrium price is $10,

so we have a consumer surplus of∫ 200

0

d(q)− p dq =

∫ 200

0

10− .05q dq

= 10q − .025q2
∣∣∣200
0

= 2000− 1000 = 1000.

Conversely we can compute the producer surplus of∫ 200

0

p− s(q) dq =

∫ 200

0

8− .0002q2 dq

= 8q − .0002

3
q3
∣∣∣200
0

= 1600− 533.33 = 1066.67

Figure 6.2: Left: the consumer surplus. Right: the producer surplus.

6.2.2 The Average Value of a Function

Another type of problem that involves adding up a bunch of numbers is computing averages.

If we have some finite collection of numbers, the average is what we get when we add them
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up, and divide by the number of numbers:

1

n

n∑
k=1

ak.

This gives a straightforward high school problem.

Example 6.10. What is the average value of the set {1, 2, 4, 5, 5, 7}?

x =
1 + 2 + 4 + 5 + 5 + 7

6
=

24

6
= 4.

However, sometimes we want to find the average value of a function. This seems like

something we should be able to compute; and the question makes some intuitive sense. For

instance, between 0 and 1, it seems clear that x2 is “on average” smaller than x, but between

0 and 3 it’s bigger.

A function gives us infinitely many numbers; but integration is in some sense a sensible

way to add infinitely many numbers up, and so hopefully to average them.

In particular, if we sample the function at n evenly spaced points, our average is

1

n

n∑
i=1

f(x∗
i ) =

1

b− a

n∑
i=1

b− a

n
f(x∗

i )

which you should recognize as a Riemann sum (times 1
b−a

). If we take the limit—which rep-

resents taking the average value after “infinitely many” sample points—we get the following

definition:

Definition 6.11. The average value of a function f over an interval [a, b] is

fave =
1

b− a

∫ b

a

f(t)dt.

Example 6.12. What is the average value of f(x) = x2 on [0, 1]? We have

fave =
1

1

∫ 1

0

x2 dx =
1

3
.

The biggest value is 1, the smallest is 0, and the one in the middle is 1
4
, but the “average”

value is 1
3
.
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If I have a finite set of numbers and take the average, my average might not be anywhere

in the set; for instance, if I roll a six-sided die, the average output will be 3.5, which isn’t on

the die at all. When I average continuous quantities, however, this can’t happen.

Theorem 6.13 (Mean Value Theorem for Integrals). If f is continuous on [a, b], then there

is a number c in [a, b] such that

f(c) = fave =
1

b− a

∫ b

a

f(t) dt.

In other words, ∫ b

a

f(t) dt = f(c)(b− a).

Proof. This statement, as well as its name, might look familiar. In fact this is just the

mean value theorem from differential calculus repackaged. Let F (x) =
∫ x

a
f(t) dt. Then F

is continuous on [a, b] and differentiable on (a, b), and so by the Mean Value Theorem there

is some c such that F (b)− F (a) = F ′(c)(b− a).

But by the Fundamental Theorem of Calculus, F ′(c) = f(c). And it’s easy to see that

F (b) =
∫ b

a
f(t) dt, and F (a) =

∫ a

a
f(t) dt = 0. So we have∫ b

a

f(t) dt− 0 = f(c)(b− a).

Remark 6.14. Geometrically, this essentially tells us that there is some rectangle with the

same area as the region under the graph of f . In particular, we can take a rectangle with

width b− a, whose top edge intersects the graph of our function somewhere, and whose area

is the same as the area of the region under the curve.

Now we should discuss some physical and other practical processes that are well-described

by integration—which is just a fancy way of saying that integrals let us solve these problems.

6.2.3 Multiplication, Units, and Distance

The second way we can use integrals for applications involves multiplication. Recall that the

integral computes∫ b

a

f(t) dt = lim
n→+∞

n∑
k=1

f

(
a+ k

b− a

n

)
b− a

n
= lim

n→∞

n∑
k=1

f(xk)∆x.

This is the sum of a bunch of products f(xk)∆x.
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There are a lot of physical quanties that we can compute as the product of two other

things, like distance as the product of speed and time. As long as speed is constant, we

can get distance by multiplying speed and time. If you travel 5 meters per second for ten

seconds, you will go 5 ·10 = 50 meters. But if your speed is changing over time, that doesn’t

quite work.

So imagine we know that our speed is v(t) = t2 − 6t meters per second. If we travel for

ten seconds, we can’t really say our total distance is 10(t2 − 6t) meters; that doesn’t even

have the right units!

Instead, we can split our big time interval up into a bunch of little time intervals, and

pretend that our speed is constant on each interval. So for a small time interval, we approx-

imate dk ≈ v(tk)∆tk for the distance traveled in that interval. The units here make sense,

because v(tk) is in meters per second, and tk and thus ∆(tk) is in seconds; when we multiply

them together we get meters. Thus we have total distance

D ≈
n∑

k=1

dk ≈
n∑

k=1

v(tk)∆tk.

So for instance we could approximate our total distance traveled as

D ≈ 2 · v(2) + 2 · v(4) + 2 · v(6) + 2 · v(8) + 2 · v(10)

− 16− 16 + 0 + 32 + 80 = 80

so we travel roughly 80 meters in ten seconds. (And specifically we travel 16 meters backwards

in the first two seconds, then another 16 backwards in the next two seconds, then stay roughly

still for the third two seconds, then travel forwards 32 meters in the fourth two seconds, and

travel 80 meters forward in the last two seconds.)

But this is just a Riemann sum! So we can get the exact distance traveled by computing

D =

∫ b

a

v(t) dt.

Thus we see that total distance traveled is the integral of velocity. (This shouldn’t be a

surprise, since velocity is the derivative of distance.)
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In our example, we would get

D =

∫ 10

0

t2 − 6t dt

=
t3

3
− 3t2

∣∣∣10
0

=
1000

3
− 300 =

100

3
= 33.33.

This is quite a bit smaller than our estimate; if you look at the graph, you can see that

our right-endpoint approximation is wildly overestimating the importance of our high speed

at the very end of the process. (If we’d taken a left-endpoint approximation, we’d have

estimated that we finish exactly where we started; the truth is roughly in the middle.)

But notice this explains the “net signed area” thing we discussed in section 5.2. Let’s

look at the graph again, this time with shading:

The integral computes the (green) area above the x axis, minus the (yellow) area below

the x axis. In this problem, the green area represents distance moved to the right, and the

yellow area represents distance moved to the left; the total distance moved is the green area

minus the yellow area.

And one final thing to take away from this is our discussion of units. Any time we

compute an integral
∫ b

a
f(x) dx, then dx has the units of the variable x, and f(x) of course

has whatever units f outputs. So just like the derivative gave units of output-over-input (see

section 2.7.2), the integral gives units of output-times-input. If v gives velocity as a function

of time, then the integral gives velocity-times-time—which is speed.

6.2.4 Work

Another calculation that works similarly is the physical quantity of work.

In physics, force is the product of mass and acceleration; intuitively, force is what causes

a mass to accelerate, and the more acceleration/the more massive the object, the more force

is required. This is often written F = m · a, but in our context it is better to say that the
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position of an object is given by the function s(t), and then F = m · d2s
dt2

, since acceleration

is the second derivative of position.

Remark 6.15. In the SI system, mass is measured in kilograms, and force is measured in

newtons, where N = kg ·m/s2. In the Imperial system most Americans use, the pound is a

unit of force; the unit of mass is the slug, and one pound is one slug-foot per second squared.

I bring this up primarily because the name “slug” is funny.

Intuitively, moving things aroudn takes work, and moving them faster takes more work.

Formally, we say that work is force times distance: the amount of force applied to an object,

times the distance the object is moved. The SI unit for work is the Newton-meter or joule,

which is J = kg ·m2/s2. The imperial unit for work is the foot-pound, which is about 1.36

joules.

If you lift a 2 kg object a meter, then you have to exert 2 · 9.8 newtons of force (since

acceleration due to gravity is 9.8m/s2, and thus do 19.6 joules of work. If a 20 pound weight

is lifted five feet, than 100 foot-pounds of work are done.

When force is constant, work is easy to calculuate–just multiply the force by the distance.

Things become more interesting when the force varies. As usual, we can approximate by

chopping the movement up into lots of little pieces, assuming the force is constant on each

small piece, and adding them up. That is, if the force at position x is F (x), then when an

object moves from a to b the work done is approximately

W ≈
n∑

i=1

F (xi)
b− a

n
.

This is a Riemann sum, so taking the limit gives an integral: the total work done is∫ b

a

F (x) dx.

Remark 6.16. Unlike most of the geometric integrals we’ve been doing for the past few weeks,

work can be a negative number; this just indicates that the force is in the opposite direction

of the motion.

Example 6.17. A particle is controlled by a force field such that the force on it is x3 + x

pounds when it is x feet away from the origin. How much work does it take to move the

particle from x = 2 to x = 4?

W =

∫ 4

2

x3 + x dx =
x4

4
+

x2

2
|42 = 64 + 8− 4− 2 = 66.
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Example 6.18. A physical law called Hooke’s Law says that the force exerted by a string

stretched x units beyond its natural length is kx, where k is the “spring constant” and

depends on the particular spring.

Suppose a spring is naturally 20 cm and it takes 50 N to stretch it to 30 cm. How much

work is needed to stretch the spring from 30cm to 35cm?

We have 50 = k · .1 and so k = 500. Thus the force when the spring is stretched x meters

beyond its normal length is kx, and the work done is

W =

∫ .15

.1

500x dx = 250x2|.15.1 = 3.125J.

Example 6.19. A 50 meter cable has a mass of 50kg and hangs from the top of a cliff. How

much work does it take to raise the cable up the cliff?

The thing that makes this difficult is that the mass of the remaining rope depends on

how much mass we’ve lifted already. Conceptually, you can think about having to lift the

first meter of rope one meter, and the second meter of rope two meters, etc. Each meter of

rope masses 1 kg, so this would give us a Riemann sum

W ≈
50∑
i=1

1 · 9.8 · i

Or more generally

W ≈
n∑

i=1

∆x · 9.8 · xi.

Taking the limit gives the integral

W =

∫ 50

0

9.8x dx = 4.9x2|500 = 2500 · 4.9 = 12250J.

Example 6.20. A tank of water is shaped like an upside-down pyramid. (No, I don’t know

why people keep building tanks shaped like upside-down pyramids). The pyramid has a base

side length of 4m and a height of 12m, and it is filled with water to a depth of 8m. How

much work will it take to pump the water out of the top of the tank? (water has a density

of 1000kg / m3).

Again, to figure out our integral we may want to set up the Riemann sum, or at least

fake set it up. Let 0 be the point of the pyramid and 12 be the base (at the top). The

volume of a small cross-sectional volume is A(h)∆h, thus the mass is 1000A(h)δh and the

force is 1000A(h)∆h · 9.8. The distance we have to pump the water is 12 − h, so the total

work on each cross-section is (12− h)9800A∆h Newtons.
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Now we just have to work out area in terms of height. Using a similar triangles argument,

we see that s(h)
h

= 4
12

and thus s(h) = h/3, and A(h) = h2/9. We integrate from 0 to 8

becasue we’re integrating over the height that contains water. Then we have∫ 8

0

(12− h)9800 · h2/9 · dy =
9800

9

(
4h3 − h4

4

)
|80 =

9800

9
(2048− 1024− 0) =

10, 035, 200

9
J.

6.2.5 Hydrostatic Pressure

Another problem we can handle easily with these tools is the idea of water (or fluid) pressure.

If you imagine a flat surface submerged in some fluid with density ρ to a depth of d meters,

then the weight of the fluid over it is Aρdg where A is the area of the surface (and thus Adρ

is the mass of the fluid) and g = 9.8 is acceleration due to gravity. We define the pressure

to the be the force divided by the area, and thus P = F
A
= ρdg.

(In SI units we measure this in Newtons per square meter, otherwise known as Pascals.

In Imperial units there are a number of different units used, including “inches of mercury.”)

Fact 6.21. If an object is submerged in a fluid to a given depth, the pressure exerted by the

fluid is the same in all directions.

This means that fluid pressure is effectively a function of height/depth and nothing else.

If the pressure is varying and we want to find the total force acting on a surface, we can

effectively add up the pressure on each little patch of a surface to find the total force acting

on it.

Example 6.22. A 3 by 3 meter square is submerged in water until it is just covered, edge-

first. What is the total force the water exerts on the square?

We want to chop the square into strips that are all at roughly the same depth. If we slice

the square into three horizontal strips, then the ith strip is roughly at depth i meters and

has width 3, and thus has roughly the force 3 · 1 · i · ρ · g. Adding up the force on all thirty

strips gives

F ≈
3∑

i=1

3 · 1 · i · ρ · g =
3∑

i=1

3 · 1000 · 9.8 · h∆h

In the limit, we get the following integral:∫ 3

0

3 · ρ · g · h dh =

∫ 3

0

3000 · 9.8 · h dh = 29400(h2/2)|30 = 29400 · 9
2
= 132, 300.

Example 6.23. A cylindrical drum is lying on its side underwater. The drum has radius of

5 feet and is submerged in 20 feet of water. What is the force exerted on one circular face

of the drum?
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Let’s set 0 to be the center of the circle, so that the equation for the circle is x2+y2 = 25.

Then the width of the object at height y is 2
√

25− y2. The depth at height y is 15 − y

(which ranges from 10 to 20), and the pressure due to water is 62.5 * depth. So we get the

integral

F =

∫ 5

−5

62.5(15− y)2
√

25− y2 dy = 125

∫ 5

−5

15
√
25− y2 dy − 125

∫ 5

−5

y
√

25− y2 dy.

The second integral is 0 because y
√

25− y2 is an odd function. The first integral can be

done by setting y = 5 sin θ, but we can also observe that it is the integral of a semicircle of

radius 5 and thus is equal to 12.5π. So we have

F = 125 · 15 · 12.5π = 23437.5lb.

6.3 Finding Volumes by Cross-Sections

Area is fundamentally length times width, and we computed areas by integrating the length

against the width–by which I mean, we wrote the length at a point as a function of the width

at that point, and took the integral across the whole width.

Volume is area times height. (Or area times length, depending on your perspective). We

will compute volume by finding the area of a cross-section and integrating along the entire

length of our shape. Geometrically, the Riemann sum corresponds to slicing our shape into

many thin cylinders and adding their areas up.

Remark 6.24. In our terminology, a “cylinder” is any solid that has a flat base and an

identical flat top, connected by straight sides at right angles. A traditional circular cylinder

qualifies, but so does a rectangular box, and so do stranger shapes.

Definition 6.25. If S is a solid, we say the cross-sectional area at a point x is the area of

the intersection of our solid with the plane which passes through x and is perpendicular to

the x-axis (and thus parallel to the yz plane).

If S is a solid lying between x = a and x = b, and A(x) is a function giving the cross-

sectional area at x, then we say the volume V of S is

V = lim
max∆xi→0

n∑
i=1

A(x∗
i )∆xi =

∫ b

a

A(x) dx.

Example 6.26. What is the volume of a cone with height 2 and base radius 4?
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We draw a picture. By a similar triangles argument, we see that when we are x distance

from the point, the radius is 2x and thus the area of the cross-section is 4πx2. Thus the

volume is ∫ 2

0

4πx2 dx =
4πx3

3
|20 =

32

3
π.

This matches the formula for the volume of a cone, which is 1
3
πr2h.

In fact, we can also rederive that formula. If a cone has height h and base radius b, then

the radius at x distance from the height is x b
h
and the area is πx2b2/h2. So the volume of

the cylinder is ∫ h

0

πx2b2/h2 dx = πb2/h2x
3

3
|h0 =

b2hπ

3
.

Example 6.27. What is the volume of a solid with a circular base of radius one, where each

cross-section is an equilateral triangle?

Make the circle x2 + y2 = 1. Then the width of the base of the cross-section at x is

2
√
1− x2. Since sin 60◦ =

√
32, we know the height of each triangle is

√
3b/2, and thus the

area of the triangle is
√
3(1− x2). Thus the volume is∫ 1

−1

√
3(1− x2) dx =

√
3x−

√
3x3

3
|1−1 =

(
√
3−

√
3

3

)
−

(
−
√
3− −

√
3

3

)
=

4
√
3

3
.

These problems are sometimes known as volumes of “solids of rotation,” because this

technique is particularly good at solving problems like the following:

Example 6.28. What is the volume of the solid obtained by rotating the region bounded

by y = x2, x = 5, y = 0 about the x-axis?

We draw a picture, and see that the region has height x2 at a point x, and thus the solid

has a cross-section which is a circle of radius x2, and thus an area of π(x2)2. It’s clear that

x varies from 0 to 5. So

V =

∫ 5

0

πx4 dx =
πx5

5
|50 = 54π − 0 = 625π.

Example 6.29. What is the volume of the solid obtained by rotatin the region bounded by

y = x2, y = 25 with x ≥ 0 around the y-axis?

As before, we draw a picture. Our region has width
√
y at a point y, and thus has

cross-sectional area πy. Then y varies from 0 to 25, and the volume is

V =

∫ 25

0

πy dy =
πy2

2
|205 =

625π

2
.
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Note that in these problems it’s easy to see which way to take our “slices”: we want to

get the circular cross-sections from the rotation, so we slice accordingly, and integrate along

the axis we rotate around.

If our region touches the axis we rotate it around, these problems are straightforward:

the cross-sectional area is the height (or width!) of the region squared times π. The problem

is trickier if we have a hollow inside. We can still compute the cross-sectional area; it is the

area of a washer, a circle with a smaller circle cut out of the center.

Remark 6.30. If a washer has outer radius R and inner radius r, then the area is πR2 − πr2,

the area of the outer circle minus the radius of the inner.

Example 6.31. What is the volume of the solid given by rotating the region bounded by

y = x2 and y = x around the x-axis.

At a point x, the cross-section of this solid is a washer. The outer circle has radius x and

the inner circle has radius x2, and thus the area of the cross-section is πx2 − πx4. So the

volume is

V =

∫ 1

0

(πx2 − πx4) dx =
πx3

3
− πx5

5
=

π

3
− π

5
=

2π

15
.

We often find ourselves rotating these regions around lines other than the x- or y-axes.

In this case we have to use our geometric intuition a bit more to sort out our cross-sectional

areas.

Example 6.32. Rotate the same region about y = 2. We draw a picture; we see that we

will get a solid whose cross-sections are washers centered at y = 2. The outer radius will be

2− x2 and the inner radius will be 2− x, so the volume is

V =

∫ 1

0

π(2− x2)2 − π(2− x)2 dx = π

∫ 1

0

4− 4x2 + x4 − 4 + 4x− x2 dx = π

∫ 1

0

x4 − 5x2 + 4x dx

= π

(
x5

5
− 5x3

3
+ 2x2

)∣∣∣∣1
0

= π(1/5− 5/3 + 2) =
4π

15
.

Example 6.33. Find the volume of the solid generated by rotating the region bounded by

y = x and y =
√
x about the line y = 1.

We will integrate with respect to x since we rotate about a line parallel to the x-axis. We

see that the curves intersect at x = y = 0 and x = y = 1. Our cross-sections are washers,

and we see the outer radius is 1− x and the inner radius is 1−
√
x. So the volume is

V = π

∫ 1

0

(1− x)2 − (1−
√
x)2 dx = π

∫ 1

0

x2 − 3x+ 2
√
x dx

= π

(
x3

3
− 3x2

2
+

4

3
x3/2

)∣∣∣∣1
0

= π

(
1

3
− 3

2
+

4

3

)
=

π

6
.
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6.4 Bonus material: Finding Volumes with Cylindrical Shells

Recall we want to find the volume of the solid obtained by rotating the region bounded by

x = 1, y = 2, y = lnx about the x-axis. Slicing it into washers as before generates a difficult

integral, so we will try to slice it a different way, by slicing it into cylindrical shells.

A cylindrical shell is what we get when we take a cylinder and remove a slightly smaller

cylinder from the inside. If the outer radius is r2 and the inner radius is r1, it’s not hard

to see that the volume of the shell is πr22h − πr21h = πh(r22 − r21). Less obviously, we factor

r22 − r21 = (r2 + r1)(r2 − r1) and write that the volume is 2π r1+r2
2

h(r2 − r1) ≈ 2πrh∆r.

In many solids of rotation, we can slice the solid into a collection of cylindrical shells to

approximate the volume, where the height of each cylinder is f(x) for some x. We get the

formula

V ≈
n∑

i=1

2πx∗
i f(x

∗
i )∆x.

As before, our approximation gets better as we use more and thinner cylinders, and when

we take the limit, we get

V = lim
max∆xi→0

n∑
i=1

2πx∗
i f(x

∗
i )∆x =

∫ b

a

1πxf(x) dx,

where a is the inner radius of our entire solid, and b is the outer radius of the entire solid.

(Note that this formula is essentially the surface area of the cylinder; this isn’t an accident).

So for our earlier example, we can slice into cylinders whose height is in the x-direction.

We see that

V =

∫ 2

0

2πy(ey − 1) dy = 2π

(
yey − ey − y2

2

)∣∣∣∣2
0

= 2π(e2 − 1).

Remark 6.34. Unlike in the method of washers, this time we will typically integrate with

respect to x when we rotate around the y-axis, and vice versa.

Example 6.35. Find the volume of the solid obtained by rotating the region bounded by

y = 0 and y = x− x2 around the line x = 2.

Inverting the function y = x − x2 would be a huge pain; so we’d like to integrate with

respect to x, and thus use the cylinder method. Note that in this case the radius r is not x,

but is 2− x. So the volume is

V =

∫ 1

0

2π(2−x)(x−x2) dx = 2π

∫ 1

0

2x−3x2+x3 dx = 2π

(
x4

4
− x3 + x2

)∣∣∣∣1
0

= 2π(1/4−1+1) =
π

2
.
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Example 6.36. What is the volume of the solid obtained by rotating the region bounded

by y = x3, y = 0, x = 1 around the line x = 1?

V =

∫ 1

0

2π(1− x)x3 dx = 2π

(
x4

4
− x5

5

)∣∣∣∣1
0

= 2π

(
1

4
− 1

5

)
=

π

10
.

Example 6.37. What is the volume of the solid obtained by rotating the same region around

the line x = 4?

V =

∫ 1

0

2π(4− x)x3 dx = 2π

(
x4 − x5

5

)∣∣∣∣1
0

= 2π

(
1− 1

5

)
=

8π

5
.

Example 6.38. What is the volume of the solid obtained by rotating the region bounded

by xy = 1, x = 0, y = 1, y = 3 about the x-axis?

We draw a picture, and conclude that to use the method of washers we’d have to break

the region up into two pieces. Instead we integrate with respect to y and use cylindrical

shells. We have y varying from 1 to 3, and the “height” of each cylinder is 1/y − 0. So the

volume is

V =

∫ 3

1

2πy(1/y) dy =

∫ 3

1

2π dy = 2πy|31 = 4π.

Example 6.39. A word has to be said at this point about finding the volume of a sphere.

We can view the sphere as a solid of rotation and find its volume using cross-sections:

V =

∫ r

−r

π(
√
r2 − x2)2 dx = π

∫ r

−r

r2 − x2 dx = π

(
r2x− x3

3

)∣∣∣∣r
−r

= π
((
r3 − r3/3

)
−
(
−r3 + r3/3

))
= 4πr3/3.

But we can actually use another approach, similar in spirit to the method of cylindrical

shells. We can look at the sphere as being made up of a collection of spherical shells. Taking

inspiration from the cylindrical shells method, we see that the volume of each spherical shell

will be “about” the surface area of the sphere times thickness; so we integrate the surface

area of a sphere of radius x, as x varies from 0 to r. We get

V =

∫ r

0

4πx2 dx =
4πx3

3
|r0 =

4πr3

3
.

We haven’t entirely justified our argument, but with more care we certainly could.
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