Math 1231-13: Single-Variable Calculus 1
 George Washington University Spring 2024 Recitation 11

Jay Daigle

Friday April 5, 2024

Problem 1. Compute the following integrals, without using substitutions:
(a) $\int x(x+1) d x$

Solution: $\quad \int x(x+1) d x=\int x^{2}+x d x=\frac{x^{3}}{3}+\frac{x^{2}}{2}+C$.
We always like polynomials when we can have them.
(b) $\int x \sqrt{x} d x$

Solution: $\int x \sqrt{x} d x=\int x^{3 / 2}=\frac{x^{5 / 2}}{5 / 2}+C=\frac{2 x^{2} \sqrt{x}}{5}+C$.
Writing things as pure fractional exponents almost always makes them easy to deal with.
(c) $\int 5 \csc (x) \cot (x) d x$

Solution:

$$
\int 5 \csc (x) \cot (x) d x=-5 \csc (x)+C
$$

This expression looks complicated but it's secretly not.
(d) $\int\left(x^{4}-x\right)\left(x^{2}+x+1\right) d x$.

Solution:

$$
\begin{aligned}
\int\left(x^{4}-x\right)\left(x^{2}+x+1\right) d x & =\int x^{8}+x^{5}+x^{4}-x^{3}-x^{2}-x d x \\
& =\frac{1}{9} x^{9}+\frac{1}{6} x^{6}+\frac{1}{5} x^{5}-\frac{1}{4} x^{4}-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+C .
\end{aligned}
$$

Problem 2. Compute the following integrals:
(a) $\int \sqrt{3 x-4} d x$.

Solution: We can take $u=3 x-4$, which is the inside function. Then $d u=3 d x$ so we have

$$
\begin{aligned}
\int \sqrt{3 x-4} d x & =\int \sqrt{u} \frac{d u}{3}=\frac{1}{3} \int \sqrt{u} d u \\
& =\frac{1}{3} \int u^{1 / 2} d u=\frac{1}{3} \frac{u^{3 / 2}}{3 / 2}+C \\
& =\frac{1}{3} \frac{(3 x-4)^{3 / 2}}{3 / 2}+C
\end{aligned}
$$

(b) $\int \frac{\sin (\sqrt{x})}{\sqrt{x}} d x$.

Solution: Set $u=\sqrt{x}$, and $d u=\frac{d x}{2 \sqrt{x}}$. Thus

$$
\int \frac{\sin \sqrt{x}}{\sqrt{x}}=\int 2 \sin (u) d u=-2 \cos (u)+C=-2 \cos (\sqrt{x})+C
$$

(c) $\int x \sqrt{x+1} d x$.

Solution: Take $u=x+1, d u=1 \cdot d x$. Then

$$
\begin{aligned}
\int x \sqrt{x+1} d x & =\int(u-1) \sqrt{u} d u=\int u^{3 / 2}-u^{1 / 2} d u \\
& =\frac{2 u^{5 / 2}}{5}-\frac{2 u^{3 / 2}}{3}+C \\
& =\frac{2(x+1)^{5 / 2}}{5}-\frac{2(x+1)^{3 / 2}}{3}+C
\end{aligned}
$$

Problem 3. (a) Compute $\int_{1}^{2} \frac{6 x^{2}-7}{\sqrt{2 x^{3}-7 x+14}} d x$ using a u-substitution and explicitly changing the bounds of integration.
(b) Now compute the indefinite integral $\int \frac{6 x^{2}-7}{\sqrt{2 x^{3}-7 x+14}} d x$.
(c) Use your answer in part (b) to compute $\int_{1}^{2} \frac{6 x^{2}-7}{\sqrt{2 x^{3}-7 x+14}} d x$ again. How does this compare to what you did in part (a)?

Solution:

(a) We take $u=2 x^{3}-7 x+14$, so $d u=\left(6 x^{2}-7\right) d x$. Then $u(1)=9$ and $u(2)=16$. So we have

$$
\begin{aligned}
\int_{1}^{2} \frac{6 x^{2}-7}{\sqrt{2 x^{3}-7 x+14}} d x & =\int_{9}^{16} \frac{6 x^{2}-7}{\sqrt{u}} \frac{d u}{6 x^{2}-7} \\
& =\int_{9}^{16} u^{-1 / 2} d u=\left.2 u^{1 / 2}\right|_{9} ^{16}=8-6=2
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int \frac{6 x^{2}-7}{\sqrt{2 x^{3}-7 x+14}} d x & =\int \frac{6 x^{2}-7}{\sqrt{u}} \frac{d u}{6 x^{2}-7} \\
& =\int u^{-1 / 2} d u=2 u^{1 / 2}+C=2 \sqrt{2 x^{3}-7 x+14}+C
\end{aligned}
$$

(c)

$$
\begin{aligned}
\int_{1}^{2} \frac{6 x^{2}-7}{\sqrt{2 x^{3}-7 x+14}} d x & =\left.2 \sqrt{2 x^{3}-7 x+14}\right|_{1} ^{2} \\
& =2 \sqrt{16}-2 \sqrt{9}=8-6=2
\end{aligned}
$$

Notice that we wind up not only with the same answer, but the same final calculation, as in part (a); we're plugging the same values in to the same function $2 x^{3}-7 x+14$, just in a more awkward spot.

Problem 4. We want to compute $\int \sec ^{8}(x) \tan (x) d x$. Can you find multiple u that all work?

Solution: The "obvious" u to take is $u=\sec (x)$ so $d u=\sec (x) \tan (x) d x$. Then

$$
\int \sec ^{8}(x) \tan (x) d x=\int u^{7} d u=\frac{u^{8}}{8}+C=\frac{\sec ^{8}(x)}{8}+C .
$$

It also works to take $u=\sec ^{2}(x)$ or $\sec ^{4}(x)$ or $\sec ^{8}(x)$. e.g. if $u=\sec ^{8}(x)$, then $d u=$ $8 \sec ^{8}(x) \tan (x) d x$ and

$$
\int \sec ^{8}(x) \tan (x) d x=\int \frac{1}{8} d u=\frac{u}{8}+C=\frac{\sec ^{8}(x)}{8}+C
$$

Problem 5. Evaluate $\int_{-2}^{2} 4 \sqrt{4-x^{2}} d x$ by thinking about area. (Hint: what does the graph of $\sqrt{4-x^{2}}$ look like?)

Solution: It's possible to do the integral algebraically, but not really with the techniques we have in this course. (The big idea from Calc 2 is we can do the substitution $x=\sin (u)$ and then use trigonometric identities to simplify the integral.) Instead, we graph the function $\sqrt{4-x^{2}}$, and see that it is a semicircle with radius 2 , and thus has area $\pi\left(2^{2}\right) / 2=2 \pi$.

We multiply by four to get 8π, and thus have

$$
\int_{-2}^{2} 4 \sqrt{4-x^{2}} d x=8 \pi
$$

Problem 6. Compute the total area of the "valley" between two peaks of the sine function.

Solution: We see that this area is the area of the region between $y=1$ and $y=\sin x$ between $\pi / 2$ and $5 \pi / 2$. (There are other ways to set this up, but this way works). So we compute

$$
\int_{\pi / 2}^{5 \pi / 2} 1-\sin x d x=x+\left.\cos (x)\right|_{\pi / 2} ^{5 \pi / 2}=(5 \pi / 2+0)-(\pi / 2+0)=2 \pi
$$

