Math 1231-13: Single-Variable Calculus 1 George Washington University Spring 2024 Recitation 13

Jay Daigle

Friday April 19, 2024

Problem 1. We want to find the area of the region bounded by $y = x^2 + 1$, $y = 17 - x^2$, and x = 1, taking the side with $x \ge 1$.

- (a) Sketch the region in question. Based on the picture, would you rather integrate with respect to x or to y? Discuss this with someone near you.
- (b) Set up an integral to compute this region, integrating with respect to x.
- (c) Set up an integral to compute this region, integrating with respect to y.
- (d) Which of these integrals do you prefer? Pick one and compute it.

Solution:

(a) We first draw the region, and see a sort of sideways triangle with a base at x = 1 and a point where the curves $y = x^2 + 1$ and $y = 17 - x^2$ intersect. Setting them equal, we get $x^2 + 1 = 17 - x^2$, which gives $2x^2 = 16$ and $x = \pm\sqrt{8}$. Since $x \ge 1$ we know we want $x = \sqrt{8}$, and thus the point of the triangle is at $(\sqrt{8}, 9)$. Checking where the two curves hit x = 1 we see that y varies from 1 to 17.

(b) To integrate with respect to x, we see that x varies from 1 to $\sqrt{8}$, and get

$$A = \int_{1}^{\sqrt{8}} (17 - x^2) - (x^2 - 1) \, dx = \int_{1}^{\sqrt{8}} 18 - 2x^2 \, dx.$$

(c) To integrate with respect to y, we'd have to write x as a function of y: we see our two curves are $x = \sqrt{y-1}$ and $x = \sqrt{17-y}$. Then we have to break our region into two pieces: one as x goes from 2 to 9, and the other as x goes from 9 to 17.

$$A = \int_{2}^{9} \sqrt{17 - y} - 1 \, dy + \int_{9}^{16} \sqrt{17 - y} - 1 \, dy,$$

(d) The second integral is in fact doable, but it's unnecessarily ugly. Instead we integrate with respect to x:

$$A = \int_{1}^{\sqrt{8}} (17 - x^2) - (x^2 - 1) \, dx = \int_{1}^{\sqrt{8}} 18 - 2x^2 \, dx$$
$$= 18x - \frac{2}{3}x^3 \Big|_{1}^{\sqrt{8}} = 36\sqrt{2} - 32\sqrt{2}/3 - 18 + 2/3 = \frac{76\sqrt{2} - 52}{3}$$

Solution: We see that this area is the area of the region between y = 1 and $y = \sin x$ between $\pi/2$ and $5\pi/2$. (There are other ways to set this up, but this way works). So we compute

$$\int_{\pi/2}^{5\pi/2} 1 - \sin x \, dx = x + \cos(x) \big|_{\pi/2}^{5\pi/2} = (5\pi/2 + 0) - (\pi/2 + 0) = 2\pi.$$

Problem 3. For each of the following functions, figure out the units of $\int f(x) dx$. What is this integral computing:

- (a) f(x) gives acceleration in meters per second squared as a function of time in seconds.
- (b) f(x) gives tension in pounds per inch, as a function of how many inches along a material you are.
- (c) f(x) gives the pressure exerted by a gas (in newtons per square meter), as a function of the volume in cubic meters. (Imagine a piston moving out to expand a chamber full of gas under pressure.)
- (d) f(x) gives density in kilograms per meter, as a function of how many meters along a steel rod you are.
- (e) f(x) gives resistance in volts per ampere as a function of how many amperes you run through a wire.

Solution:

- (a) $\int f(x) dx$ gives meters per second squared times seconds, which is meters per second. It gives your velocity as a function of time.
- (b) $\int f(x) dx$ will give pounds per inch times inches, and thus pounds. It describes the total force applied to a material by that tension.
- (c) $\int f(x) dx$ gives newtons per square meter, times cubic meters, which is newtons times meters. It's not obvious, but the work done by the gas as the volume changes!
- (d) $\int f(x) dx$ gives you kilograms per meter times meters, which is just kilograms. It tells you the total mass of your object.
- (e) $\int f(x) dx$ gives volts per amp times amps, or just volts. It computes the total voltage through your wire.

Problem 4. Find the average value of the function $\frac{x}{(x^2+1)^2}$ for $1 \le x \le 3$.

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/

Solution: We take $u = x^2 + 1$ so du = 2x dx, and so

$$A = \frac{1}{3-1} \int_{1}^{3} \frac{x}{(x^{2}+1)^{2}} dx = \frac{1}{2} \int_{2}^{10} \frac{x}{u^{2}} \cdot \frac{du}{2x}$$
$$= \frac{1}{4} \int_{2}^{10} u^{-2} du = \frac{1}{4} (-u^{-1}) \Big|_{2}^{10}$$
$$= \frac{1}{4} \left(\frac{-1}{10} - \frac{-1}{2}\right) = \frac{1}{4} \cdot \frac{2}{5} = \frac{1}{10}.$$

So the function has an average value of $\frac{1}{10}$ between 1 and 3.

Problem 5. Suppose the demand for pizzas is $D(q) = 25 - .0001q^2$ and the supply is S(q) = 10 + .02q.

- (a) How many pizzas will be sold, and at what price?
- (b) What is the consumer surplus?
- (c) What is the producer surplus?
- (d) What is the total surplus?

Solution:

- (a) 300 pizzas, at a price of 16 dollars per pizza.
- (b) $\int_0^{300} 25 .0001q^2 16 \, dq = 1800.$
- (c) $\int_0^{300} 16 (10 + .02q) dq = 900.$
- (d) 2700.

Problem 6. A 12in spring is stretched to 15in by a force of 75lbs.

(a) What is the spring constant? What units does it have?

4

- (b) What is the function that gives force as a function of position? what units does it have?
- (c) What is the work done by stretching the spring from 16in to 20in? What units are your answer in?

Solution:

- (a) We know that the force must be kx where x is the displacement. Since the displacement is 3in and the force is 75lbs we must have k = 25lbs/in.
- (b) We have F(12) = 0 and F(15) = 75. We can write F(x) = 25(x 12). This function takes in inches, and outputs force in pounds.
- (c) We need to integrate the force over the displacement we're using. So we compute

$$W = \int_{16}^{20} 25(x - 12) \, dx = \int_{16}^{20} 25x - 300 \, dx$$
$$= \frac{25}{2}x^2 - 300x \Big|_{16}^{20} = (5000 - 6000) - (3200 - 4800)$$
$$= -1000 - (-1600) = 600.$$

Thus the work is in lbs. The units are, importantly, foot-inches; in the more usual units of foot-pounds, the work is 50ft lbs.