Math 1231-13: Single-Variable Calculus 1
 George Washington University Spring 2024 Recitation 14

Jay Daigle

Friday April 26, 2024

Problem 1. A 12in spring is stretched to 15 in by a force of 75 lbs .
(a) What is the spring constant? What units does it have?
(b) What is the function that gives force as a function of position? what units does it have?
(c) What is the work done by stretching the spring from 16 in to 20 in ? What units are your answer in?

Problem 2. Find the volume of a shape whose base is a circle of radius 2, where slices perpendicular to the base are squares.

Problem 3. Let's find the volume of the solid generated by rotating the region bounded by $y=x$ and $y=\sqrt{x}$ about the line $y=1$.
(a) Sketch a picture of the region, and draw in the line of revolution.
(b) Lightly try to sketch what the solid of revolution will look like. Can you describe it in words?
(c) Sketch in the slices you're going to use. Write down a formula for the volume of one slice. (This should involve a $d x$).
(d) Set up an integral that computes the volume of the whole solid.
(e) Compute the volume.

Problem 4. We want to find the volume of the solid obtained by rotating the region bounded by $x y=1, x=0, y=1, y=3$ about the x-axis.
(a) Sketch a picture of this region. Try to visualize what the solid of revolution will look like.
(b) Try setting up an integral using the washer method. Are we integrating $d x$ or $d y$? What's annoying about this setup?
(c) Now let's set up an integral using the shells method. Here are we integrating $d x$ or $d y$? What's harder about this? What's easier?
(d) Compute one of those integrals.

