Math 1231-13: Single-Variable Calculus 1
 George Washington University Spring 2024 Recitation 2

Jay Daigle

Friday Jan 26, 2024

Problem 1. Let $f(x)=5 x+2$. We want to use an $\varepsilon-\delta$ argument to compute $\lim _{x \rightarrow 2} f(x)$.
(a) If x is about 2 , what should $f(x)$ be?
(b) Write down expressions using absolute value for the input and output errors.
(c) If we want $\varepsilon=1$, what does δ need to be?
(d) Find a formula for δ in terms of ε (same form as $\delta=\varepsilon / 3$ or $\delta=\varepsilon$).
(e) Try to write a full proof.

But we mostly want to practice the way we actually compute limits.
Problem 2 (Warmup). Let $f(x)=\frac{x^{2}+\sin (x)+3}{x^{2}-x-2}$.
(a) Where is f continuous? Where is it discontinuous?
(b) What is $\lim _{x \rightarrow 0} f(x)$?

Problem 3. Let $f(x)=\frac{x-1}{x^{2}-1}$.
(a) What is $f(2)$? Is f continuous at 2 ?
(b) What is $\lim _{x \rightarrow 2} f(x)$?
(c) What is $f(1)$? Is f continuous at 1 ?
(d) What function can we find that's almost the same as f, but defined and continuous at 1 ? (Is this function the same as f ?)
(e) What is $\lim _{x \rightarrow 1} f(x)$?

Problem 4. Let $g(x)=\frac{(x+1)^{2}-1}{x+2}$.
(a) Is g continuous where it's defined? Where is it undefined?
(b) Can you find a function that's almost identical to g but continuous everywhere?
(c) What is $\lim _{x \rightarrow-2} g(x)$?

Problem 5. Let $h(x)=\frac{x-1}{\sqrt{5-x}-2}$.
(a) Is this function continuous where it's defined? Where is it undefined?
(b) We can factor an $x-1$ out of the top, but we can't obviously factor one out of the bottom. We need to use an algebraic trick make the $x-1$ appear. What tricks do we have that might work?
(c) What is $\lim _{X \rightarrow 1} h(x)$?

