Math 1231-13: Single-Variable Calculus 1
 George Washington University Spring 2024 Recitation 2

Jay Daigle

Friday Jan 26, 2024

Problem 1. Let $f(x)=5 x+2$. We want to use an $\varepsilon-\delta$ argument to compute $\lim _{x \rightarrow 2} f(x)$.
(a) If x is about 2 , what should $f(x)$ be?
(b) Write down expressions using absolute value for the input and output errors.
(c) If we want $\varepsilon=1$, what does δ need to be?
(d) Find a formula for δ in terms of ε (same form as $\delta=\varepsilon / 3$ or $\delta=\varepsilon$).
(e) Try to write a full proof.

Solution:

(a) $f(x) \approx 12$.
(b) Output error is $|f(x)-12|$ or $|5 x+2-12|$, which we can simplify to $|5 x-10|$. Input error is $|x-2|$.
(c) We want $|5 x-10|<1$, and dividing by 5 gives $|x-2|<1 / 5$. So we'd need $\delta=1 / 5$.
(d) We want $|5 x-10|<\varepsilon$, and dividing by 5 gives $|x-2|<\varepsilon / 5$. So we'd need $\delta=\varepsilon / 5$.
(e) Let $\varepsilon>0$ and set $\delta=\varepsilon / 5$. Then if $0<|x-2|<\delta=\varepsilon / 5$ we compute that

$$
|f(x)-12|=|5 x-10|=5|x-2|<5 \cdot \varepsilon / 5=\varepsilon .
$$

But we mostly want to practice the way we actually compute limits.

Problem 2 (Warmup). Let $f(x)=\frac{x^{2}+\sin (x)+3}{x^{2}-x-2}$.
(a) Where is f continuous? Where is it discontinuous?
(b) What is $\lim _{x \rightarrow 0} f(x)$?

Solution:

(a) This function is made of algebra and trigonometry, so it's continuous where it's defined. The denominator is $x^{2}-x-2=(x-2)(x+1)$ so the function is undefined at 2 and -1 .
(b) Because this function is continuous at 0 , we can just plug in:

$$
\lim _{x \rightarrow 0} f(x)=f(0)=\frac{0^{2}+\sin (0)+3}{0^{2}-0-2}=-3 / 2 .
$$

Problem 3. Let $f(x)=\frac{x-1}{x^{2}-1}$.
(a) What is $f(2)$? Is f continuous at 2 ?
(b) What is $\lim _{x \rightarrow 2} f(x)$?
(c) What is $f(1)$? Is f continuous at 1 ?
(d) What function can we find that's almost the same as f, but defined and continuous at 1 ? (Is this function the same as f ?)
(e) What is $\lim _{x \rightarrow 1} f(x)$?

Solution:

(a) $f(2)=1 / 3$, and f is continuous here since it's a reasonable functions.
(b) $\lim _{x \rightarrow 2} f(x)=1 / 3$.
(c) $f(1)$ isn't defined, and thus f is not continuous at 1 .
(d) $\frac{x-1}{x^{2}-1}=\frac{x-1}{(x-1)(x+1)}$ is almost the same as $\frac{1}{x+1}$.
(e) $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{1}{x+1}=\frac{1}{2}$.

Note we're using the Almost Identical Functions principle here. The function f was not continuous at 1 , because it's not defined there. But we can replace it by an almost identical function that is continuous, and then that limit is simple to compute.

Problem 4. Let $g(x)=\frac{(x+1)^{2}-1}{x+2}$.
(a) Is g continuous where it's defined? Where is it undefined?
(b) Can you find a function that's almost identical to g but continuous everywhere?
(c) What is $\lim _{x \rightarrow-2} g(x)$?

Solution:

(a) g is a reasonable function so it's continuous where it's defined, but it isn't defined at $x=-2$.
(b) $\frac{x^{2}+2 x+1-1}{x+1}=\frac{x(x+2)}{x+2}$ is almost the same as x. So $g(x)$ is almost the same as x.
(c) $\lim _{x \rightarrow-2} g(x)=\lim _{x \rightarrow-2} x=-2$.

Note that $\frac{x(x+2)}{x+2} \neq x$, but their limits at 0 are the same because the functions are the same near 0 (and in fact everywhere except at 0).

Problem 5. Let $h(x)=\frac{x-1}{\sqrt{5-x}-2}$.
(a) Is this function continuous where it's defined? Where is it undefined?
(b) We can factor an $x-1$ out of the top, but we can't obviously factor one out of the bottom. We need to use an algebraic trick make the $x-1$ appear. What tricks do we have that might work?
(c) What is $\lim _{X \rightarrow 1} h(x)$?

Solution:

(a) The function is reasonable, so it's continuous where defined. IT's undefined at $x=1$ and also at $x>5$.
(b) Here we need to multiply by the conjugate. We can compute

$$
\begin{aligned}
\frac{x-1}{\sqrt{5-x}-2} & =\frac{x-1}{\sqrt{5-x}-2} \frac{\sqrt{5-x}+2}{\sqrt{5-x}+2} \\
& =\frac{(x-1)(\sqrt{5-x}+2)}{(5-x)-4} \\
& =\frac{(x-1)(\sqrt{5-x}+2)}{-(x-1)}
\end{aligned}
$$

This function is not the same as $-\sqrt{5-x}-2$, but it's very close.
(c)

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{5-x}-2} & =\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{5-x}-2} \frac{\sqrt{5-x}+2}{\sqrt{5-x}+2} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)(\sqrt{5-x}+2)}{(5-x)-4} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)(\sqrt{5-x}+2)}{-(x-1)} \\
& =\lim _{x \rightarrow 1}-(\sqrt{5-x}+2)=-4 .
\end{aligned}
$$

