Math 1231-13: Single-Variable Calculus 1
 George Washington University Spring 2024 Recitation 4

Jay Daigle
Friday February 9, 2024

Problem 1. Let $f(x)=x^{3}$. We want to find a formula for the derivative of this function at any given point.
(a) Write down a formula for $f^{\prime}(a)$ using the $h \rightarrow 0$ limit formulation. What does the numerator mean? What does the denominator mean?
(b) Use your formula from part (a) to compute the derivative.
(c) Now write down a formula for $f^{\prime}(a)$ using the $x \rightarrow a$ limit formulation. Does this look easier or harder than the formula from part (a), and why? What does the numerator mean? What does the denominator mean?
(d) Use the formula from part (c) to compute the derivative. You should get the same answer you got in part (b).
(e) Which method was faster? Which method was easier?

Problem 2. Let $g(x)=\sqrt[3]{x}$.
(a) Write down a limit formula to compute the derivative of g at 0 .
(b) What is $g^{\prime}(0)$? What does this tell you?
(c) Now write down a limit formula to compute the derivative of $p(x)=\sqrt[3]{x^{2}}$.
(d) What is this limit? What does that tell you?
(e) Write down a limit formula to compute the derivative of g at a when $a \neq 0$.
(f) (Bonus) Can you compute this limit? What do you have to do here? (It's not obvious, but there's an algebraic trick from Day 1 that can help us.)

Problem 3. Let $f(x)=\sqrt{x^{2}-4}$.
(a) Set up a limit expression to calculate $f^{\prime}(x)$. Do you think $h \rightarrow 0$ or $x \rightarrow a$ will be easier here?
(b) Compute $f^{\prime}(x)$.
(c) Where is f differentiable? Where is it not differentiable?

Problem 4. Let $g(x)=\frac{1}{x+3}$.
(a) Write down a limit expression to compute $g^{\prime}(2)$. Be careful with order of operations and parentheses!
(b) Now compute $g^{\prime}(2)$.
(c) Write a limit expression to compute $g^{\prime}(x)$. Again, make sure you get your order of operations right.
(d) Compute $g^{\prime}(x)$.

