Math 1231-13: Single-Variable Calculus 1
 George Washington University Spring 2024 Recitation 4

Jay Daigle

Friday February 9, 2024

Problem 1. (a) Let $h(x)=\tan ^{2}(x)$. Find functions f and g so that $h(x)=(f \circ g)(x)$.
(b) Compute $f^{\prime}(x)$ and $g^{\prime}(x)$. Use that info to compute $h^{\prime}(x)$.
(c) Now let $h(x)=\tan \left(x^{2}\right)$. Find functions f and g so that $h(x)=(f \circ g)(x)$.
(d) Compute $f^{\prime}(x)$ and $g^{\prime}(x)$. Use that information to compute $h^{\prime}(x)$.

Problem 2. Consider the function $\sec ^{2}\left(x^{2}+1\right)$
(a) Find functions f and g so that $(f \circ g)(x)=\sec ^{2}\left(x^{2}+1\right)$.
(b) Talk to the people next to you. Did they pick the same f and g that you did? Can you find a different pair of functions f and g that also work?
(c) Find functions f, g, h so that $(f \circ g \circ h)(x)=\sec ^{2}\left(x^{2}+1\right)$.
(d) Compute f^{\prime}, g^{\prime}, and h^{\prime}.
(e) What is $\frac{d}{d x} \sec ^{2}\left(x^{2}+1\right)$?

Problem 3. Find

$$
\frac{d}{d x} \frac{\sin \left(x^{2}\right)+\sin ^{2}(x)}{x^{2}+1}
$$

Problem 4. (a) Compute

$$
\frac{d}{d x} \sqrt{\frac{\sqrt{x}+1}{(\cos x+1)^{2}}}
$$

(b) Find

$$
\frac{d}{d x} \tan ^{4}\left(\sqrt[3]{x^{5}+x^{3}+2}+1\right)
$$

Problem 5 (Bonus). Calculate

$$
\frac{d}{d x}\left(\frac{\sin ^{2}\left(\frac{x^{2}+1}{\sqrt{x-1}}\right)+\sqrt{x^{3}-2}}{\cos \left(\sqrt{x^{2}+1}+1\right)-\tan \left(x^{4}+3\right)}\right)^{5 / 3}
$$

Problem 6 (Geometric Series). Another function it's sometimes important to approximate is the "geometric series" formula $f(x)=\frac{1}{1-x}$, near $x=0$.
(a) What is $f^{\prime}(x)$?
(b) Find a linear approximation for $f(x)$ near $x=0$.
(c) Use this formula to estimate $\frac{1}{9}$ and $\frac{1}{1.01}$. Do these answers make sense?
(d) Use your formula to estimate $\frac{1}{1.5}$ and $\operatorname{frac} 10.5$. Do these answers make sense?
(e) Use your formula to estimate $f(-1)$ and $f(1)$. Do these answers make sense?

