Math 1231-13: Single-Variable Calculus 1 George Washington University Spring 2024 Recitation 4

Jay Daigle

Friday February 9, 2024

Problem 1. (a) Let $h(x) = \tan^2(x)$. Find functions f and g so that $h(x) = (f \circ g)(x)$.

- (b) Compute f'(x) and g'(x). Use that info to compute h'(x).
- (c) Now let $h(x) = \tan(x^2)$. Find functions f and g so that $h(x) = (f \circ g)(x)$.
- (d) Compute f'(x) and g'(x). Use that information to compute h'(x).

Solution:

- (a) We can take $f(x) = x^2$ and $g(x) = \tan(x)$.
- (b) f'(x) = 2x and $g'(x) = \sec^2(x)$, so

$$h'(x) = f'(g(x)) \cdot g'(x) = f'(\tan(x)) \cdot g'(x) = 2\tan(x) \cdot \sec^2(x).$$

- (c) Now we have $f(x) = \tan(x)$ and $g(x) = x^2$.
- (d) Now we have $f'(x) = \sec^2(x)$ and g'(x) = 2x, so

$$h'(x) = f'(g(x)) \cdot g'(x) = f'(x^2) \cdot g'(x) = \sec^2(x^2) \cdot 2x$$

Problem 2. Consider the function $\sec^2(x^2+1)$

- (a) Find functions f and g so that $(f \circ g)(x) = \sec^2 (x^2 + 1)$.
- (b) Talk to the people next to you. Did they pick the same f and g that you did? Can you find a different pair of functions f and g that also work?

- (c) Find functions f, g, h so that $(f \circ g \circ h)(x) = \sec^2 (x^2 + 1)$.
- (d) Compute f', g', and h'.
- (e) What is $\frac{d}{dx} \sec^2 (x^2 + 1)$?

Solution:

- (a) There are basically two choices here. You could say that $f(x) = \sec^2(x)$ and $g(x) = x^2 + 1$, which is maybe the more obvious choice; or you could say that $f(x) = x^2$ and $g(x) = \sec(x^2 + 1)$.
- (b) This is really a composite of three functions, which is why you could make different choices here.
- (c) $f(x) = x^2$, $g(x) = \sec(x)$, $h(x) = x^2 + 1$. (Technically there are other things you could do, like $g(x) = \sec(x+1)$ and $h(x) = x^2$, but those are moderately silly.)

(d)
$$f'(x) = 2x, g'(x) = \sec(x)\tan(x), h'(x) = 2x.$$

(e)

$$\frac{d}{dx}\sec^2(x^2+1) = f'(g(h(x)) \cdot g'(h(x)) \cdot h'(x))$$

= $f'(\sec(x^2+1)) \cdot g'(x^2+1) \cdot h'(x)$
= $2\sec(x^2+1) \cdot \sec(x^2+1)\tan(x^2+1) \cdot 2x.$

Problem 3. Find

$$\frac{d}{dx}\frac{\sin(x^2) + \sin^2(x)}{x^2 + 1}$$

Solution:

$$\frac{d}{dx}\frac{\sin(x^2) + \sin^2(x)}{x^2 + 1} = \frac{(\sin(x^2) + \sin^2(x))'(x^2 + 1) - 2x(\sin(x^2) + \sin^2(x))}{(x^2 + 1)^2}$$
$$= \frac{(\cos(x^2) \cdot 2x + 2\sin(x)\cos(x))(x^2 + 1) - 2x(\sin(x^2) + \sin^2(x))}{(x^2 + 1)^2}$$

Problem 4. (a) Compute

$$\frac{d}{dx}\sqrt{\frac{\sqrt{x}+1}{(\cos x+1)^2}}$$

2

Solution:

$$\frac{d}{dx}\sqrt{\frac{\sqrt{x}+1}{(\cos x+1)^2}} = \frac{1}{2}\left(\frac{\sqrt{x}+1}{(\cos x+1)^2}\right)^{-1/2} \cdot \left(\frac{\sqrt{x}+1}{(\cos x+1)^2}\right)'$$
$$= \frac{1}{2}\left(\frac{\sqrt{x}+1}{(\cos x+1)^2}\right)^{-1/2} \cdot \frac{\frac{1}{2}x^{-1/2}(\cos x+1)^2 - 2(\cos x+1)(-\sin x)(\sqrt{x}+1)}{(\cos x+1)^4}$$

(b) Find

$$\frac{d}{dx}\tan^4(\sqrt[3]{x^5 + x^3 + 2} + 1).$$

Solution:

$$\frac{d}{dx}\tan^4(\sqrt[3]{x^5 + x^3 + 2} + 1) = 4\tan^3(\sqrt[3]{x^5 + x^3 + 2} + 1) \cdot \sec(\sqrt[3]{x^5 + x^3 + 2} + 1)$$
$$\cdot \tan(\sqrt[3]{x^5 + x^3 + 2} + 1) \cdot (\sqrt[3]{x^5 + x^3 + 2} + 1)'$$
$$= 4\tan^4(\sqrt[3]{x^5 + x^3 + 2} + 1) \sec(\sqrt[3]{x^5 + x^3 + 2} + 1)$$
$$\cdot \left(\frac{1}{3}(x^5 + x^3 + 1)^{-2/3} \cdot (5x^4 + 3x^2)\right).$$

Problem 5 (Bonus). Calculate

$$\frac{d}{dx} \left(\frac{\sin^2 \left(\frac{x^2 + 1}{\sqrt{x - 1}} \right) + \sqrt{x^3 - 2}}{\cos(\sqrt{x^2 + 1} + 1) - \tan(x^4 + 3)} \right)^{5/3}$$

Problem 6 (Geometric Series). Another function it's sometimes important to approximate is the "geometric series" formula $f(x) = \frac{1}{1-x}$, near x = 0.

- (a) What is f'(x)?
- (b) Find a linear approximation for f(x) near x = 0.
- (c) Use this formula to estimate $\frac{1}{.9}$ and $\frac{1}{1.01}$. Do these answers make sense?
- (d) Use your formula to estimate $\frac{1}{1.5}$ and frac10.5. Do these answers make sense?
- (e) Use your formula to estimate f(-1) and f(1). Do these answers make sense?

Solution:

(a) $f'(x) = -(1-x)^{-2} = \frac{1}{(1-x)^2}$. This is tricky; you get a negative sign from the power rule, but another from the chain rule that cancels it out.

(This is a weird way to write the function! Why not just use $\frac{1}{1+x}$? Because this setup makes more sense in a lot of the applications people want to use it for. You'll see why when you study power series in Calculus 2.)

- (b) f'(0) = 1, so our linear approximation is $f(x) \approx 1 + x$.
- (c) $\frac{1}{.9} = f(.1) \approx 1.1$. The true answer is $1.\overline{11}$, so that checks out. $\frac{1}{1.01} = f(-.01) \approx .99$. The true answer is .990099..., which also makes sense.
- (d) $\frac{1}{1.5} = f(-0.5) \approx 0.5$. The true answer is $2/3 \approx .\overline{66}$ so this is, like, okay-ish. $\frac{1}{0.5} = f(0.5) \approx 1.5$. The true answer is 2, so this is again okay, but not great.
- (e) $f(-1) \approx 0$. But f(-1) = 1/2, so that doesn't make a ton of sense. This is because (-1) is "far away" from zero for our purposes. And how do we know it's far away? Well...

 $f(1) \approx 0$. But f(1) is utterly undefined, since it asks us to divide by 0. We've gone too far away for the linear approximation to work at all.