Math 1231-13: Single-Variable Calculus 1
 George Washington University Spring 2024 Recitation 4

Jay Daigle

Friday February 9, 2024

Problem 1. (a) Let $h(x)=\tan ^{2}(x)$. Find functions f and g so that $h(x)=(f \circ g)(x)$.
(b) Compute $f^{\prime}(x)$ and $g^{\prime}(x)$. Use that info to compute $h^{\prime}(x)$.
(c) Now let $h(x)=\tan \left(x^{2}\right)$. Find functions f and g so that $h(x)=(f \circ g)(x)$.
(d) Compute $f^{\prime}(x)$ and $g^{\prime}(x)$. Use that information to compute $h^{\prime}(x)$.

Solution:

(a) We can take $f(x)=x^{2}$ and $g(x)=\tan (x)$.
(b) $f^{\prime}(x)=2 x$ and $g^{\prime}(x)=\sec ^{2}(x)$, so

$$
h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)=f^{\prime}(\tan (x)) \cdot g^{\prime}(x)=2 \tan (x) \cdot \sec ^{2}(x) .
$$

(c) Now we have $f(x)=\tan (x)$ and $g(x)=x^{2}$.
(d) Now we have $f^{\prime}(x)=\sec ^{2}(x)$ and $g^{\prime}(x)=2 x$, so

$$
h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)=f^{\prime}\left(x^{2}\right) \cdot g^{\prime}(x)=\sec ^{2}\left(x^{2}\right) \cdot 2 x .
$$

Problem 2. Consider the function $\sec ^{2}\left(x^{2}+1\right)$
(a) Find functions f and g so that $(f \circ g)(x)=\sec ^{2}\left(x^{2}+1\right)$.
(b) Talk to the people next to you. Did they pick the same f and g that you did? Can you find a different pair of functions f and g that also work?
(c) Find functions f, g, h so that $(f \circ g \circ h)(x)=\sec ^{2}\left(x^{2}+1\right)$.
(d) Compute f^{\prime}, g^{\prime}, and h^{\prime}.
(e) What is $\frac{d}{d x} \sec ^{2}\left(x^{2}+1\right)$?

Solution:

(a) There are basically two choices here. You could say that $f(x)=\sec ^{2}(x)$ and $g(x)=$ $x^{2}+1$, which is maybe the more obvious choice; or you could say that $f(x)=x^{2}$ and $g(x)=\sec \left(x^{2}+1\right)$.
(b) This is really a composite of three functions, which is why you could make different choices here.
(c) $f(x)=x^{2}, g(x)=\sec (x), h(x)=x^{2}+1$. (Technically there are other things you could do, like $g(x)=\sec (x+1)$ and $h(x)=x^{2}$, but those are moderately silly.)
(d) $f^{\prime}(x)=2 x, g^{\prime}(x)=\sec (x) \tan (x), h^{\prime}(x)=2 x$.
(e)

$$
\begin{aligned}
\frac{d}{d x} \sec ^{2}\left(x^{2}+1\right) & =f^{\prime}\left(g(h(x)) \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x)\right. \\
& =f^{\prime}\left(\sec \left(x^{2}+1\right)\right) \cdot g^{\prime}\left(x^{2}+1\right) \cdot h^{\prime}(x) \\
& =2 \sec \left(x^{2}+1\right) \cdot \sec \left(x^{2}+1\right) \tan \left(x^{2}+1\right) \cdot 2 x
\end{aligned}
$$

Problem 3. Find

$$
\frac{d}{d x} \frac{\sin \left(x^{2}\right)+\sin ^{2}(x)}{x^{2}+1}
$$

Solution:

$$
\begin{aligned}
\frac{d}{d x} \frac{\sin \left(x^{2}\right)+\sin ^{2}(x)}{x^{2}+1} & =\frac{\left(\sin \left(x^{2}\right)+\sin ^{2}(x)\right)^{\prime}\left(x^{2}+1\right)-2 x\left(\sin \left(x^{2}\right)+\sin ^{2}(x)\right)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{\left(\cos \left(x^{2}\right) \cdot 2 x+2 \sin (x) \cos (x)\right)\left(x^{2}+1\right)-2 x\left(\sin \left(x^{2}\right)+\sin ^{2}(x)\right)}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

Problem 4. (a) Compute

$$
\frac{d}{d x} \sqrt{\frac{\sqrt{x}+1}{(\cos x+1)^{2}}}
$$

Solution:

$$
\begin{aligned}
\frac{d}{d x} \sqrt{\frac{\sqrt{x}+1}{(\cos x+1)^{2}}} & =\frac{1}{2}\left(\frac{\sqrt{x}+1}{(\cos x+1)^{2}}\right)^{-1 / 2} \cdot\left(\frac{\sqrt{x}+1}{(\cos x+1)^{2}}\right)^{\prime} \\
& =\frac{1}{2}\left(\frac{\sqrt{x}+1}{(\cos x+1)^{2}}\right)^{-1 / 2} \cdot \frac{\frac{1}{2} x^{-1 / 2}(\cos x+1)^{2}-2(\cos x+1)(-\sin x)(\sqrt{x}+1)}{(\cos x+1)^{4}}
\end{aligned}
$$

(b) Find

$$
\frac{d}{d x} \tan ^{4}\left(\sqrt[3]{x^{5}+x^{3}+2}+1\right)
$$

Solution:

$$
\begin{gathered}
\frac{d}{d x} \tan ^{4}\left(\sqrt[3]{x^{5}+x^{3}+2}+1\right)=4 \tan ^{3}\left(\sqrt[3]{x^{5}+x^{3}+2}+1\right) \cdot \sec \left(\sqrt[3]{x^{5}+x^{3}+2}+1\right) \\
\cdot \tan \left(\sqrt[3]{x^{5}+x^{3}+2}+1\right) \cdot\left(\sqrt[3]{x^{5}+x^{3}+2}+1\right)^{\prime} \\
=4 \tan ^{4}\left(\sqrt[3]{x^{5}+x^{3}+2}+1\right) \sec \left(\sqrt[3]{x^{5}+x^{3}+2}+1\right) \\
\cdot\left(\frac{1}{3}\left(x^{5}+x^{3}+1\right)^{-2 / 3} \cdot\left(5 x^{4}+3 x^{2}\right)\right)
\end{gathered}
$$

Problem 5 (Bonus). Calculate

$$
\frac{d}{d x}\left(\frac{\sin ^{2}\left(\frac{x^{2}+1}{\sqrt{x-1}}\right)+\sqrt{x^{3}-2}}{\cos \left(\sqrt{x^{2}+1}+1\right)-\tan \left(x^{4}+3\right)}\right)^{5 / 3}
$$

Problem 6 (Geometric Series). Another function it's sometimes important to approximate is the "geometric series" formula $f(x)=\frac{1}{1-x}$, near $x=0$.
(a) What is $f^{\prime}(x)$?
(b) Find a linear approximation for $f(x)$ near $x=0$.
(c) Use this formula to estimate $\frac{1}{9}$ and $\frac{1}{1.01}$. Do these answers make sense?
(d) Use your formula to estimate $\frac{1}{1.5}$ and $\operatorname{frac} 10.5$. Do these answers make sense?
(e) Use your formula to estimate $f(-1)$ and $f(1)$. Do these answers make sense?

Solution:

(a) $f^{\prime}(x)=-(1-x)^{-2}=\frac{1}{(1-x)^{2}}$. This is tricky; you get a negative sign from the power rule, but another from the chain rule that cancels it out.
(This is a weird way to write the function! Why not just use $\frac{1}{1+x}$? Because this setup makes more sense in a lot of the applications people want to use it for. You'll see why when you study power series in Calculus 2.)
(b) $f^{\prime}(0)=1$, so our linear approximation is $f(x) \approx 1+x$.
(c) $\frac{1}{.9}=f(.1) \approx 1.1$. The true answer is $1 . \overline{11}$, so that checks out. $\frac{1}{1.01}=f(-.01) \approx .99$. The true answer is $.990099 \ldots$, which also makes sense.
(d) $\frac{1}{1.5}=f(-0.5) \approx 0.5$. The true answer is $2 / 3 \approx . \overline{66}$ so this is, like, okay-ish.
$\frac{1}{0.5}=f(0.5) \approx 1.5$. The true answer is 2, so this is again okay, but not great.
(e) $f(-1) \approx 0$. But $f(-1)=1 / 2$, so that doesn't make a ton of sense. This is because (-1) is "far away" from zero for our purposes. And how do we know it's far away? Well...
$f(1) \approx 0$. But $f(1)$ is utterly undefined, since it asks us to divide by 0 . We've gone too far away for the linear approximation to work at all.

