Math 1231-13: Single-Variable Calculus 1
 George Washington University Spring 2024 Recitation 9

Jay Daigle

Friday March 22, 2024

Problem 1. Let $g(x)=x \tan (x)$. We want to sketch a graph of g.
(a) What is the domain of g ?
(b) For simplicity, let's just look at $[-\pi / 2, \pi / 2]$. What can you say about any asymptotes it has?
(c) Does this function have any roots you can find?
(d) $g^{\prime}(x)=\frac{\sin (x) \cos (x)+x}{\cos ^{2}(x)}$. What are the critical points?
(Hint: when is $\sin (x) \cos (x)$ positive and when is it negative?)
(e) What are the critical values?
(f) Where is g increasing and decreasing? Does it have maxima or minima?
(g) $g^{\prime \prime}(x)=2 \sec ^{2}(x)(1+x \tan (x))$. Where are the potential points of inflection, and what are their values? Where is h concave up and down?
(h) Sketch the graph.

Problem 2. Let $h(x)=\frac{x+2}{x-1}$. We want to sketch a graph of h.
(a) What is the domain of h ? What can you say about any asymptotes it has?
(b) Does this function have any roots? Where?
(c) What happens as x approaches $+\infty$? $-\infty$?
(d) $h^{\prime}(x)=-3(x-1)^{-2}$. What are the critical points and values?
(e) Where is h increasing and decreasing? Does it have maxima or minima?
(f) $h^{\prime \prime}(x)=6(x-1)^{-3}$. Where are the potential points of inflection? Where is h concave up and down?
(g) Sketch the graph.

Problem 3 (Bonus). Let $g(x)=x^{5}-4 x^{3}+4 x+7$. We want to sketch a graph of g.
(a) What is the domain of g ? What can you say about any asymptotes it has?
(b) Does this function have any roots you can find?
(c) What happens as x approaches $+\infty$? $-\infty$?
(d) $g^{\prime}(x)=5 x^{4}-12 x^{2}+4$. What are the critical points?
(Hint: if we set $u=x^{2}$ this becomes a quadratic, and we can factor it.)
(e) What are the critical values?
(Hint: $\left.g(x)=7+x\left(x^{4}-4 x^{2}+4\right)=7+x\left(u^{2}-4 u+4\right).\right)$
(f) Where is g increasing and decreasing? Does it have maxima or minima?
(g) $g^{\prime \prime}(x)=20 x^{3}-24 x$. Where are the potential points of inflection, and what are their values? Where is h concave up and down?
(h) Sketch the graph.

