Math 1231-13: Single-Variable Calculus 1
 George Washington University Spring 2024 Recitation 9

Jay Daigle

Friday March 22, 2024

Problem 1. Let $g(x)=x \tan (x)$. We want to sketch a graph of g.
(a) What is the domain of g ?
(b) For simplicity, let's just look at $[-\pi / 2, \pi / 2]$. What can you say about any asymptotes it has?
(c) Does this function have any roots you can find?
(d) $g^{\prime}(x)=\frac{\sin (x) \cos (x)+x}{\cos ^{2}(x)}$. What are the critical points?
(Hint: when is $\sin (x) \cos (x)$ positive and when is it negative?)
(e) What are the critical values?
(f) Where is g increasing and decreasing? Does it have maxima or minima?
(g) $g^{\prime \prime}(x)=2 \sec ^{2}(x)(1+x \tan (x))$. Where are the potential points of inflection, and what are their values? Where is h concave up and down?
(h) Sketch the graph.

Solution:

(a) The domain of g is real numbers except $n \pi+\pi / 2$.
(b) In $[-\pi / 2, \pi / 2]$ we can't include the endpoints so we now have $(-\pi / 2, \pi / 2) . \lim _{x \rightarrow-\pi / 2^{+}} g(x)=$ $+\infty$ and $\lim _{x \rightarrow \pi / 2^{-}} g(x)=+\infty$, which gives us asymptotes.
(c) The function is 0 when $x=0$ (and when $x=n \pi$ if we look farther out).
(d) $g^{\prime}(x)=\tan (x)+x \sec ^{2}(x)=\frac{\sin (x) \cos (x)+x}{\cos ^{2}(x)}$. It's not hard to see that when $-\pi / 2<x<0$ then $g^{\prime}(x)<0$, and when $0<x<\pi / 2$ then $g^{\prime}(x)>0$, and $g^{\prime}(0)=0$. So the only critical point is at 0 .
(e) $g(0)=0$.
(f) And we saw that g is decreasing on $(-\pi / 2,0)$ and increasing on $(0, \pi / 2)$. Thus g has a local minimum at $0 . g(0)=0$.
(g) $x \tan x \geq 0$ on $(-\pi / 2, \pi / 2)$, so $g^{\prime \prime}(x) \geq 0$ on $(-\pi / 2, \pi / 2)$, so the function is concave up everywhere.
(h)

Figure 0.1: The graph of $g(x)=x \tan (x)$

Problem 2. Let $h(x)=\frac{x+2}{x-1}$. We want to sketch a graph of h.
(a) What is the domain of h ? What can you say about any asymptotes it has?
(b) Does this function have any roots? Where?
(c) What happens as x approaches $+\infty$? $-\infty$?
(d) $h^{\prime}(x)=-3(x-1)^{-2}$. What are the critical points and values?
(e) Where is h increasing and decreasing? Does it have maxima or minima?
(f) $h^{\prime \prime}(x)=6(x-1)^{-3}$. Where are the potential points of inflection? Where is h concave up and down?
(g) Sketch the graph.

Solution:

(a) The domain of h is all real numbers except 1 . We see that $\lim _{x \rightarrow 1^{-}} h(x)=-\infty$ and $\lim _{x \rightarrow 1^{+}} h(x)=+\infty$.
(b) The function has a root at $x=-2$.
(c) We have $\lim _{x \rightarrow+\infty} h(x)=\lim _{x \rightarrow-\infty} h(x)=1$. (We can use L'Hôpital's rule or divide the top and bottom by x).
(d) We have $h^{\prime}(x)=\frac{(x-1)-(x+2)}{(x-1)^{2}}=-3(x-1)^{-2}$. This has no roots and fails to exist when $x=1$. Thus there are no "real" critical points.
(e) We make a chart for increase and decrease:

$$
\begin{array}{cccc}
& -3 & (x-1)^{-2} & h^{\prime}(x) \\
x<1 & - & + & - \\
1<x & - & + & -
\end{array}
$$

Thus h is decreasing everywhere. It has no local maxima or minima.
(f) $h^{\prime \prime}(x)=6(x-1)^{-3}$ is positive when $x>1$ and negative when $x<1$, so it is concave down on the left, and concave up on the right.

Figure 0.2: The graph of $h(x)=\frac{x+2}{x-1}$

Problem 3 (Bonus). Let $g(x)=x^{5}-4 x^{3}+4 x+7$. We want to sketch a graph of g.
(a) What is the domain of g ? What can you say about any asymptotes it has?
(b) Does this function have any roots you can find?
(c) What happens as x approaches $+\infty$? $-\infty$?
(d) $g^{\prime}(x)=5 x^{4}-12 x^{2}+4$. What are the critical points?
(Hint: if we set $u=x^{2}$ this becomes a quadratic, and we can factor it.)
(e) What are the critical values?
(Hint: $\left.g(x)=7+x\left(x^{4}-4 x^{2}+4\right)=7+x\left(u^{2}-4 u+4\right).\right)$
(f) Where is g increasing and decreasing? Does it have maxima or minima?
(g) $g^{\prime \prime}(x)=20 x^{3}-24 x$. Where are the potential points of inflection, and what are their values? Where is h concave up and down?
(h) Sketch the graph.

Solution:

(a) The domain of g is all reals. There are no asymptotes.
(b) This function has one real root, but good luck finding it without a computer.
(c) $\lim _{x \rightarrow+\infty} g(x)=+\infty$ and $\lim _{x \rightarrow-\infty} g(x)=-\infty$.
(d) The derivative is defined everywhere. We can work out that if $u=x^{2}$ we have

$$
4 x^{5}-12 x^{2}+4=5 u^{2}-12 u+4=(5 u-2)(u-2)=\left(5 x^{2}-2\right)\left(x^{2}-2\right)
$$

so the derivative has four roots: where $x^{2}=2$ and where $x^{2}=2 / 5$. Thus the critical points are $x= \pm \sqrt{2}$ and $x= \pm \sqrt{2 / 5}$.
(e)

$$
\begin{aligned}
g(-\sqrt{2}) & =7-\sqrt{2}(4-8+4)=7 \\
g(\sqrt{2}) & =7+\sqrt{2}(4-8+4)=7 \\
g(-\sqrt{2 / 5}) & =7-\sqrt{2 / 5}\left(\frac{4}{25}-\frac{8}{5}+4\right)=7-\sqrt{2 / 5} \cdot \frac{64}{25} \\
g(\sqrt{2 / 5}) & =7+\sqrt{2 / 5}\left(\frac{4}{25}-\frac{8}{5}+4\right)=7+\sqrt{2 / 5} \cdot \frac{64}{25} .
\end{aligned}
$$

(f) We can make a chart:

$$
\begin{array}{lccc}
& 5 x^{2}-2 & x^{2}-2 & g^{\prime} \\
x<-\sqrt{2} & + & + & + \\
-\sqrt{2}<x<-\sqrt{2 / 5} & + & - & - \\
-\sqrt{2 / 5}<x<\sqrt{2 / 5} & - & - & + \\
\sqrt{2 / 5}<x<\sqrt{2} & + & - & - \\
\sqrt{2}<x & + & + & + \\
\text { http://jaydaigle.net/teaching/courses/2024-spring-1231-11/ }
\end{array}
$$

So f is increasing on $(-\infty,-\sqrt{2}) \cup(-\sqrt{2 / 5}, \sqrt{2 / 5}) \cup(\sqrt{2 / 5},+\infty)$ and is decreasing on $(-\sqrt{2},-\sqrt{2 / 5}) \cup(\sqrt{2 / 5}, \sqrt{2})$.
g has local maxima at $(-\sqrt{2}, 7)$ and at $\left(\sqrt{2 / 5}, 7+\sqrt{2 / 5} \cdot \frac{64}{25}\right)$. It has local minima at $\left(-\sqrt{2 / 5}, 7-\sqrt{2 / 5} \cdot \frac{64}{25}\right)$ and $(\sqrt{2}, 7)$.
(g) $g^{\prime \prime}(x)=4 x\left(5 x^{2}-6\right)$ so the possible points of inflection are 0 and $\pm \sqrt{6 / 5}$. We compute

$$
\begin{aligned}
g(-\sqrt{6 / 5}) & =7-\sqrt{6 / 5}\left(\frac{36}{25}-\frac{24}{5}+4\right)=7-\sqrt{6 / 5} \cdot \frac{16}{25} \\
g(0) & =7 \\
g(\sqrt{6 / 5}) & =7+\sqrt{6 / 5}\left(\frac{36}{25}-\frac{24}{5}+4\right)=7+\sqrt{6 / 5} \cdot \frac{16}{25}
\end{aligned}
$$

To find concavity we can make another chart:

$$
\begin{array}{lccc}
& 4 x & 5 x^{2}-6 & g^{\prime} \\
x<-\sqrt{5 / 6} & - & + & - \\
-\sqrt{6 / 5}<x<0 & - & - & + \\
0<x<\sqrt{6 / 5} & + & - & - \\
\sqrt{6 / 5}<x & + & + & +
\end{array}
$$

So g is concave upwards on $(-\sqrt{6 / 5}, 0) \cup(\sqrt{6 / 5},+\infty)$, and concave downwards on $(-\infty,-\sqrt{6 / 5}) \cup(0, \sqrt{6 / 5})$. (So all the potential points of inflection are in fact points of inflection.)
(h)

Figure 0.3: The graph of $g(x)=x^{5}-4 x^{3}+4 x+7$. Critical points in red, and points of inflection in black.

