Math 1231-13: Single-Variable Calculus 1 George Washington University Spring 2024 Recitation 9

Jay Daigle

Friday March 22, 2024

Problem 1. Let $g(x) = x \tan(x)$. We want to sketch a graph of g.

- (a) What is the domain of g?
- (b) For simplicity, let's just look at $[-\pi/2, \pi/2]$. What can you say about any asymptotes it has?
- (c) Does this function have any roots you can find?
- (d) $g'(x) = \frac{\sin(x)\cos(x)+x}{\cos^2(x)}$. What are the critical points? (Hint: when is $\sin(x)\cos(x)$ positive and when is it negative?)
- (e) What are the critical values?
- (f) Where is g increasing and decreasing? Does it have maxima or minima?
- (g) $g''(x) = 2 \sec^2(x)(1 + x \tan(x))$. Where are the potential points of inflection, and what are their values? Where is h concave up and down?
- (h) Sketch the graph.

Solution:

- (a) The domain of g is real numbers except $n\pi + \pi/2$.
- (b) In $[-\pi/2, \pi/2]$ we can't include the endpoints so we now have $(-\pi/2, \pi/2)$. $\lim_{x \to -\pi/2^+} g(x) = +\infty$ and $\lim_{x \to \pi/2^-} g(x) = +\infty$, which gives us asymptotes.

- (c) The function is 0 when x = 0 (and when $x = n\pi$ if we look farther out).
- (d) $g'(x) = \tan(x) + x \sec^2(x) = \frac{\sin(x)\cos(x) + x}{\cos^2(x)}$. It's not hard to see that when $-\pi/2 < x < 0$ then g'(x) < 0, and when $0 < x < \pi/2$ then g'(x) > 0, and g'(0) = 0. So the only critical point is at 0.
- (e) g(0) = 0.
- (f) And we saw that g is decreasing on $(-\pi/2, 0)$ and increasing on $(0, \pi/2)$. Thus g has a local minimum at 0. g(0) = 0.
- (g) $x \tan x \ge 0$ on $(-\pi/2, \pi/2)$, so $g''(x) \ge 0$ on $(-\pi/2, \pi/2)$, so the function is concave up everywhere.

Figure 0.1: The graph of $g(x) = x \tan(x)$

Problem 2. Let $h(x) = \frac{x+2}{x-1}$. We want to sketch a graph of h.

- (a) What is the domain of h? What can you say about any asymptotes it has?
- (b) Does this function have any roots? Where?
- (c) What happens as x approaches $+\infty$? $-\infty$?
- (d) $h'(x) = -3(x-1)^{-2}$. What are the critical points and values?
- (e) Where is h increasing and decreasing? Does it have maxima or minima?
- (f) $h''(x) = 6(x-1)^{-3}$. Where are the potential points of inflection? Where is h concave up and down?
- (g) Sketch the graph.

Solution:

- (a) The domain of h is all real numbers except 1. We see that $\lim_{x\to 1^-} h(x) = -\infty$ and $\lim_{x\to 1^+} h(x) = +\infty$.
- (b) The function has a root at x = -2.
- (c) We have $\lim_{x\to+\infty} h(x) = \lim_{x\to-\infty} h(x) = 1$. (We can use L'Hôpital's rule or divide the top and bottom by x).
- (d) We have $h'(x) = \frac{(x-1)-(x+2)}{(x-1)^2} = -3(x-1)^{-2}$. This has no roots and fails to exist when x = 1. Thus there are no "real" critical points.
- (e) We make a chart for increase and decrease:

Thus h is decreasing everywhere. It has no local maxima or minima.

(f) $h''(x) = 6(x-1)^{-3}$ is positive when x > 1 and negative when x < 1, so it is concave down on the left, and concave up on the right.

Figure 0.2: The graph of $h(x) = \frac{x+2}{x-1}$

Problem 3 (Bonus). Let $g(x) = x^5 - 4x^3 + 4x + 7$. We want to sketch a graph of g.

- (a) What is the domain of g? What can you say about any asymptotes it has?
- (b) Does this function have any roots you can find?
- (c) What happens as x approaches $+\infty$? $-\infty$?
- (d) $g'(x) = 5x^4 12x^2 + 4$. What are the critical points?

(Hint: if we set $u = x^2$ this becomes a quadratic, and we can factor it.)

(e) What are the critical values?

(Hint: $g(x) = 7 + x(x^4 - 4x^2 + 4) = 7 + x(u^2 - 4u + 4).$)

- (f) Where is g increasing and decreasing? Does it have maxima or minima?
- (g) $g''(x) = 20x^3 24x$. Where are the potential points of inflection, and what are their values? Where is h concave up and down?
- (h) Sketch the graph.

Solution:

- (a) The domain of g is all reals. There are no asymptotes.
- (b) This function has one real root, but good luck finding it without a computer.
- (c) $\lim_{x\to+\infty} g(x) = +\infty$ and $\lim_{x\to-\infty} g(x) = -\infty$.
- (d) The derivative is defined everywhere. We can work out that if $u = x^2$ we have

$$4x^{5} - 12x^{2} + 4 = 5u^{2} - 12u + 4 = (5u - 2)(u - 2) = (5x^{2} - 2)(x^{2} - 2)$$

so the derivative has four roots: where $x^2 = 2$ and where $x^2 = 2/5$. Thus the critical points are $x = \pm \sqrt{2}$ and $x = \pm \sqrt{2/5}$.

(e)

$$g(-\sqrt{2}) = 7 - \sqrt{2}(4 - 8 + 4) = 7$$
$$g(\sqrt{2}) = 7 + \sqrt{2}(4 - 8 + 4) = 7$$
$$g(-\sqrt{2/5}) = 7 - \sqrt{2/5} \left(\frac{4}{25} - \frac{8}{5} + 4\right) = 7 - \sqrt{2/5} \cdot \frac{64}{25}$$
$$g(\sqrt{2/5}) = 7 + \sqrt{2/5} \left(\frac{4}{25} - \frac{8}{5} + 4\right) = 7 + \sqrt{2/5} \cdot \frac{64}{25}$$

(f) We can make a chart:

$$5x^2 - 2 \quad x^2 - 2 \quad g'$$

$$x < -\sqrt{2} \qquad + \qquad + \qquad +$$

$$-\sqrt{2} < x < -\sqrt{2/5} \qquad + \qquad - \qquad -$$

$$-\sqrt{2/5} < x < \sqrt{2/5} \qquad - \qquad - \qquad +$$

$$\sqrt{2/5} < x < \sqrt{2} \qquad + \qquad - \qquad -$$

$$\sqrt{2} < x \qquad + \qquad + \qquad +$$

http://jaydaigle.net/teaching/courses/2024-spring-1231-11/

4

So f is increasing on $(-\infty, -\sqrt{2}) \cup (-\sqrt{2/5}, \sqrt{2/5}) \cup (\sqrt{2/5}, +\infty)$ and is decreasing on $(-\sqrt{2}, -\sqrt{2/5}) \cup (\sqrt{2/5}, \sqrt{2})$. g has local maxima at $(-\sqrt{2}, 7)$ and at $(\sqrt{2/5}, 7 + \sqrt{2/5} \cdot \frac{64}{25})$. It has local minima at $(-\sqrt{2/5}, 7 - \sqrt{2/5} \cdot \frac{64}{25})$ and $(\sqrt{2}, 7)$.

(g) $g''(x) = 4x(5x^2 - 6)$ so the possible points of inflection are 0 and $\pm \sqrt{6/5}$. We compute

$$g(-\sqrt{6/5}) = 7 - \sqrt{6/5} \left(\frac{36}{25} - \frac{24}{5} + 4\right) = 7 - \sqrt{6/5} \cdot \frac{16}{25}$$
$$g(0) = 7$$
$$g(\sqrt{6/5}) = 7 + \sqrt{6/5} \left(\frac{36}{25} - \frac{24}{5} + 4\right) = 7 + \sqrt{6/5} \cdot \frac{16}{25}$$

To find concavity we can make another chart:

So g is concave upwards on $(-\sqrt{6/5}, 0) \cup (\sqrt{6/5}, +\infty)$, and concave downwards on $(-\infty, -\sqrt{6/5}) \cup (0, \sqrt{6/5})$. (So all the potential points of inflection are in fact points of inflection.)

(h)

Figure 0.3: The graph of $g(x) = x^5 - 4x^3 + 4x + 7$. Critical points in red, and points of inflection in black.