Math 1232 Midterm Solutions

Instructor: Jay Daigle

- You will have 75 minutes for this test.
- You are not allowed to consult books or notes during the test, but you may use a one-page, one-sided, handwritten cheat sheet you have made for yourself ahead of time.
- You may not use a calculator.
- This test has eight questions, over five pages. You should not answer all eight questions.
- The first two problems are three pages, representing topics M1 and M2. You should do both of them, and they are worth 30 points each.
- The remaining six problems represent topics S1 through S6. You will be graded on your best three, with a few possible bonus points if you also do well on the others.
- Doing three secondary topics well is much better than doing five or six poorly.
- If you perform well on a question on this test it will update your mastery scores. Achieving a $27 / 30$ on a major topic or $9 / 10$ on a secondary topic will count as getting a 2 on a mastery quiz.

Name:

Recitation Section:

	a	b	c
M1			
M2			
S1		S 2	
S3		S 4	
S5		S 6	
\sum			

Problem 1 (M1). Compute the following using methods we have learned in class. Show enough work to justify your answers.
(a) Find the derivative of $y=\left(x^{3}-x\right)^{\arctan (x)}$.

Solution:

$$
\begin{aligned}
\ln |y| & =\arctan (x) \ln \left|x^{3}-x\right| \\
\frac{y^{\prime}}{y} & =\frac{\ln \left|x^{3}-x\right|}{1+x^{2}}+\frac{\left(3 x^{2}-1\right) \arctan (x)}{x^{3}-x} \\
y^{\prime} & =y\left(\frac{\ln \left|x^{3}-x\right|}{1+x^{2}}+\frac{\left(3 x^{2}-1\right) \arctan (x)}{x^{3}-x}\right) \\
& =\left(x^{3}-x\right)^{\arctan (x)}\left(\frac{\ln \left|x^{3}-x\right|}{1+x^{2}}+\frac{\left(3 x^{2}-1\right) \arctan (x)}{x^{3}-x}\right) .
\end{aligned}
$$

(b) Compute $\int_{0}^{1 / \sqrt[3]{2}} \frac{x^{2}}{\sqrt{1-x^{6}}} d x$

Solution: The obvious substitution is $u=1-x^{6}$ but that doesn't really work. After experimenting we see $u=x^{3}$ gives $d u=3 x^{2} d x$ and thus

$$
\begin{aligned}
\int_{0}^{1 / \sqrt[3]{2}} \frac{x^{2}}{\sqrt{1-x^{6}}} d x & =\int_{0}^{1 / 2} \frac{1}{3} \frac{1}{\sqrt{1-u^{2}}} d u \\
& =\left.\frac{1}{3} \arcsin (u)\right|_{0} ^{1 / 2} \\
& =\frac{1}{3}(\arcsin (1 / 2)-\arcsin (0))=\frac{1}{3}(\pi / 6-0)=\frac{\pi}{18}
\end{aligned}
$$

Alternatively we could compute that

$$
\int \frac{x^{2}}{\sqrt{1-x^{6}}} d x=\frac{1}{3} \arcsin \left(x^{3}\right)
$$

and thus

$$
\begin{aligned}
\int_{0}^{1 / \sqrt[3]{2}} \frac{x^{2}}{\sqrt{1-x^{6}}} d x & =\left.\frac{1}{3} \arcsin \left(x^{3}\right)\right|_{0} ^{1 / \sqrt[3]{2}} \\
& =\frac{1}{3}(\arcsin (1 / 2)-\arcsin (0))=\frac{1}{3}(\pi / 6-0)=\frac{\pi}{18}
\end{aligned}
$$

(c) Compute $\int \frac{3 e^{3 x}+e^{x}}{e^{3 x}+e^{x}} d x$.

Solution: We take $u=e^{3 x}+e^{x}$, so $\frac{d u}{d x}=3 e^{3 x}+e^{x}$ and we get $d x=\frac{d u}{3 e^{3 x}+e^{x}}$. Then

$$
\begin{aligned}
\int \frac{3 e^{3 x}+e^{x}}{e^{3 x}+e^{x}} d x & =\int \frac{3 e^{3 x}+e^{x}}{u} \frac{d u}{3 e^{3 x}+e^{x}} \\
& =\int \frac{d u}{u}=\ln |u|+C \\
& =\ln \left(e^{3 x}+e^{x}\right)+C
\end{aligned}
$$

Problem 2 (M2). Compute the following integrals using methods we have learned in class. Show enough work to justify your answers.
(a) $\int x^{2} e^{3 x} d x$

Solution: We use integration by parts. Take $u=x^{2}, d v=e^{3 x} d x$ so $d u=2 x d x, v=e^{3 x} / 3$. Then

$$
\begin{aligned}
\int x^{2} e^{3 x} d x & =x^{2} \frac{e^{3 x}}{3}-\int \frac{2}{3} x e^{3 x} d x \\
& =\frac{x^{2} e^{3 x}}{3}-\left(\frac{2}{9} x e^{3 x}-\int \frac{2}{9} e^{3 x}\right) \\
& =\frac{x^{2} e^{3 x}}{3}-\frac{2 x e^{3 x}}{9}+\frac{2 e^{3 x}}{27}+C
\end{aligned}
$$

(b) $\int \frac{3 x^{2}-7 x+8}{x(x-2)^{2}} d x=$

Solution: We set up

$$
\begin{aligned}
& \frac{3 x^{2}-7 x+8}{x(x-2)^{2}}=\frac{A}{x}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}} \\
& 3 x^{2}-7 x+8=A(x-2)^{2}+B(x-2) x+C x
\end{aligned}
$$

$$
\begin{array}{lll}
0: & 8=A(-2)^{2}=4 A & \Rightarrow A=2 \\
2: & 6=2 x & \Rightarrow C=3 \\
1: & 4=2-B+3 & \Rightarrow B=1 .
\end{array}
$$

So we have

$$
\begin{aligned}
\int \frac{3 x^{2}-7 x+8}{x(x-2)^{2}} d x & =\int \frac{2}{x}+\frac{1}{x-2}+\frac{3}{(x-2)^{2}} d x \\
& =2 \ln |x|+\ln |x-2|-\frac{3}{x-2}+C .
\end{aligned}
$$

(c) $\int \frac{x^{3}}{\sqrt{x^{2}+4}} d x=$

Solution: Here we should do a trigonometric substitution. We take $x=2 \tan (\theta)$, so we have $d x=$ $2 \sec ^{2}(\theta) d \theta$. Then

$$
\begin{aligned}
\int \frac{x^{3}}{\sqrt{x^{2}+4}} d x & =\int \frac{8 \tan ^{3}(\theta)}{\sqrt{4 \tan ^{2}(\theta)+4}} 2 \sec ^{2}(\theta) d \theta \\
& =\int \frac{8 \tan ^{3}(\theta)}{\sqrt{4 \sec ^{2}(\theta)}} 2 \sec ^{2}(\theta) d \theta \\
& =\int \frac{8 \tan ^{3}(\theta)}{2 \sec (\theta)} 2 \sec ^{2}(\theta) d \theta \\
& =\int 8 \sec (\theta) \tan ^{3}(\theta) d \theta
\end{aligned}
$$

Now we need to use some trigonometric identities to do this integral. We know that things work if we have a single tangent function left, so we set $u=\sec (\theta), d u=\sec (\theta) \tan (\theta) d \theta$, and get

$$
\begin{aligned}
\int \frac{x^{3}}{\sqrt{x^{2}+4}} d x & =\int 8 \sec (\theta) \tan ^{3}(\theta) d \theta \\
& =\int 8 \sec (\theta) \tan (\theta)\left(\sec ^{2}(\theta)-1\right) d \theta \\
& =8 \int u^{2}-1 d u=\frac{8}{3} u^{3}-8 u+C=\frac{8}{3} \sec ^{3}(\theta)-8 \sec (\theta)+C
\end{aligned}
$$

Now we just need to figure out what $\sec (\theta)$ is. We know $\tan (\theta)=x / 2$, so we get a triangle with opposite side x, adjacent side 2 , and hypotenuse $\sqrt{x^{2}+4}$. Then we see that $\sec (\theta)=\frac{\sqrt{x^{2}+4}}{2}$, and thus the integral is

$$
\int \frac{x^{3}}{\sqrt{x^{2}+4}} d x=\frac{\left(x^{2}+4\right)^{3 / 2}}{3}-4 \sqrt{x^{2}+4}+C
$$

Problem 3 (S1). Let $f(x)=e^{\left(x^{3}+x\right)}+x-1$. Find $\left(f^{-1}\right)^{\prime}\left(e^{2}\right)$.
Solution: Plugging in numbers, we see $f(0)=0$ but $f(1)=e^{2}$, so $f^{-1}\left(e^{2}\right)=1$. We compute

$$
\begin{aligned}
f^{\prime}(x) & =e^{x^{3}+x}\left(3 x^{2}+1\right)+1 \\
f^{\prime}(1) & =e^{2} \cdot(3+1)+1=4 e^{2}+1
\end{aligned}
$$

and thus by the Inverse Function Theorem,

$$
\begin{aligned}
\left(f^{-1}\right)^{\prime}\left(e^{2}\right) & =\frac{1}{f^{\prime}\left(f^{-1}\left(e^{2}\right)\right)} \\
& =\frac{1}{f^{\prime}(1)}=\frac{1}{4 e^{2}+1} \approx 0.033
\end{aligned}
$$

Problem 4 (S2). Find $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{\ln (x)-x}$.
Solution: So I actually typo'd this one. I originally intended to ask this:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{x}-1-x^{\nearrow_{0}}}{\ln (1+x)-x_{\searrow 0}} & ={ }^{\mathrm{L} \text { 'H }} \lim _{x \rightarrow 0} \frac{e^{x}-1^{\nearrow^{0}}}{1 /(1+x)-1_{\searrow 0}} \\
& =\mathrm{L}^{\prime} \mathrm{H} \lim _{x \rightarrow 0} \frac{e^{x \nearrow^{1}}}{-1 /(1+x)^{2} \searrow_{\searrow-1}}=-1 .
\end{aligned}
$$

But in fact with the question I wrote, the correct answer is something like

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x^{\nearrow^{0}}}{\ln (x)-x_{\searrow-\infty}}=0
$$

Problem 5 (S3). Use the Trapezoid rule with six intervals to estimate $\int_{-4}^{2} x^{2}+1 d x$.

Solution:

$$
\begin{aligned}
\int_{-4}^{2} x^{2}+1 d x & \approx \frac{f(-4)+f(-3)}{2}+\frac{f(-3)+f(-2)}{2}+\frac{f(-2)+f(-1)}{2} \\
& +\frac{f(-1)+f(0)}{2}+\frac{f(0)+f(1)}{2}+\frac{f(1)+f(2)}{2} \\
& =\frac{17+10}{2}+\frac{10+5}{2}+\frac{5+2}{2}+\frac{2+1}{2}+\frac{1+2}{2}+\frac{2+5}{2} \\
& =\frac{1}{2}(27+15+7+3+3+7)=\frac{62}{2}=31 .
\end{aligned}
$$

Alternatively, we could write

$$
\begin{aligned}
\int_{-4}^{2} x^{2}+1 d x & \approx \frac{1}{2}(f(-4)+2 f(-3)+2 f(-2)+2 f(-1)+2 f(0)+2 f(1)+f(2)) \\
& =\frac{1}{2}(17+20+10+4+2+4+5)=\frac{1}{2} \cdot 62=31
\end{aligned}
$$

Problem 6 (S4). Compute $\int_{0}^{+\infty} \frac{1}{x^{2}} d x$.
Solution: This is improper in two ways: there's a singularity at 0 , and it goes to $+\infty$. Thus we have to compute

$$
\begin{aligned}
\int_{0}^{+\infty} \frac{1}{x^{2}} d x & =\int_{0}^{1} \frac{1}{x^{2}} d x+\int_{1}^{+\infty} \frac{1}{x^{2}} d x \\
& =\lim _{s \rightarrow 0^{+}} \int_{s}^{1} \frac{1}{x^{2}} d x+\lim _{t \rightarrow+\infty} \int_{1}^{t} \frac{1}{x^{2}} d x \\
& =\left.\lim _{s \rightarrow 0^{+}} \frac{-1}{x}\right|_{s} ^{1}+\left.\lim _{t \rightarrow+\infty} \frac{-1}{x}\right|_{1} ^{t} \\
& =\lim _{x \rightarrow 0^{+}}\left(-1+\frac{1}{s}\right)+\lim _{t \rightarrow+\infty}\left(\frac{-1}{t}+1\right)
\end{aligned}
$$

The second limit is 1 , but the first limit is $+\infty$, so the whole limit is $+\infty$ and thus the integral does not converge.
Problem 7 (S5). Compute the arc length of the curve $y=\frac{1}{27}\left(9 x^{2}+6\right)^{3 / 2}$ as x varies from 2 to 4 .
Solution: We have $y^{\prime}=x \sqrt{9 x^{2}+6}$, and thus

$$
\begin{aligned}
L & =\int_{2}^{4} \sqrt{1+x^{2}\left(9 x^{2}+6\right)} d x=\int_{2}^{4} \sqrt{1+6 x^{2}+9 x^{4}} d x \\
& =\int_{2}^{4} 3 x^{2}+1=x^{3}+\left.x\right|_{2} ^{4}=64+4-8-2=58
\end{aligned}
$$

Problem 8 (S6). Find the function that is the (specific) solution to the initial value problem $y^{\prime}=\left(y^{2}+\right.$ 1) $\left(x^{2}+1\right)$ if $y(0)=1$.

Solution:

$$
\begin{aligned}
\frac{d y}{y^{2}+1} & =\left(x^{2}+1\right) d x \\
\int \frac{d y}{y^{2}+1} & =\int\left(x^{2}+1\right) d x \\
\arctan (y) & =\frac{x^{3}}{3}+x+C \\
y & =\tan \left(\frac{x^{3}}{3}+x+C\right)
\end{aligned}
$$

So find a specific solution, we plug in and get

$$
\begin{aligned}
1 & =\tan (0+0+C) \\
C & =\arctan (1)=\pi / 4
\end{aligned}
$$

and thus

$$
y=\tan \left(\frac{x^{3}}{3}+x+\pi / 4\right)
$$

