
Math 1232 Practice Final Solutions

Instructor: Jay Daigle

• These are the instructions you will see on the real test, next week. I include them here so you know
what to expect.

• You will have 120 minutes for this test.

• You are not allowed to consult books or notes during the test, but you may use a one-page, two-sided,
handwritten cheat sheet you have made for yourself ahead of time. You must have written on the
physical sheet you bring to the test in your own handwriting.

• You may not use a calculator.

• The exam has 14 problems, one on each mastery topic we’ve covered. The exam has 8 pages total.

• On the real final, each major topic will two questions, worth 10 points each. On this practice final I
have given three questions on each major topic, for extra practice. Each secondary topic is worth 10
points.

• You should not answer all the secondary topic questions. You may attempt up to six secondary
topics. Your four best will count towards your score on the final. You may get one or two bonus points
for the fifth and sixth.

• If you perform well on a question on this test it will update your mastery scores. Achieving a 18/20
on a major topic or 9/10 on a secondary topic will count as getting a 2 on a mastery quiz.

Problem 1 (M1). (a) Compute

∫
x√

4− x4
dx.

Solution: Take x2 = 2u so du = x dx. Then∫
x√

4− x4
dx =

∫
1√

4− 4u2
du =

∫
1

2

1√
1− u2

du

=
1

2
arcsin(u) + C =

1

2
arcsin(x2/2) + C.

(b) Compute

∫
53x dx.

Solution: Take u = 3x so du = 3 dx and we get∫
53x dx =

1

3

∫
5u du =

1

3 ln 5
5u + C

=
1

3 ln 5
53x + C.

(c) Write a tangent line to the curve y2 = xx cos(x) at the point (π/2,−1).
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Solution: Implicit differentiation gives us

2 ln(y) = x cos(x) ln(x)

2y′

y
= cos(x) ln(x)− x sin(x) ln(x) + cos(x)

y′ =
1

2
(cos(x) ln(x)− x sin(x) ln(x) + cos(x)) y.

When x = π/2, y = −1, this gives us

y′ =
1

2
(0 ln(π/2)− π/2 · 1 · ln(π/2) + 0) (−1) =

1

2
(π/2 ln(π/2))

=
π(ln(π)− ln(2))

4

and thus the tangent line has equation

y =
π(ln(π)− ln(2))

4
(x− π/2)− 1.

Problem 2 (M2). Compute the following integrals:

(a)

∫
sinx cos 2x dx

Solution: Take u = cos 2x and dv = sinx dx. We get du = −2 sin 2x dx and v = − cosx dx, and∫
sinx cos 2x dx = − cos 2x cosx−

∫
2 sin 2x cosx dx

= − cos 2x cosx− 2

(∫
sin 2x cosx dx

)
= − cos 2x cosx− 2

(
sinx sin 2x− 2

∫
sinx cos 2x dx

)
= − cosx cos 2x− 2 sinx sin 2x+ 4

∫
sinx cos 2x dx

−3

∫
sinx cos 2x dx = − cosx cos 2x− 2 sinx sin 2x∫
sinx cos 2x dx =

1

3
(cosx cos 2x+ 2 sinx sin 2x)

(b)

∫ 2
√
7

√
7

dx

x
√
x2 − 7

Solution: We see as
√
x2 − 7, which should make us think of trigonometric substitution, and in

particular
√
7 sec θ = x. (In the original version of the practice final I posted I had a typo here; see

below). We work out dx =
√
7 sec θ tan θ dθ, and the bounds now range from sec θ = 1 to sec θ = 2,

and thus θ = 0 to θ = π/3. Thus∫ 2
√
7

√
7

dx

x
√
x2 − 7

=

∫ π/3

0

√
7 sec θ tan θ dθ√

7 sec θ
√
7 sec2 θ − 7

=

∫ π/3

0

sec θ tan θ dθ

sec θ
√
7 tan2 θ

=

∫ π/3

0

dθ√
7
=

θ√
7
|π/30 =

π

3
√
7
.

(c)

∫
4

(x2 + 1)(x+ 1)(x− 1)
dx
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Solution: We have

4

(x2 + 1)(x+ 1)(x− 1)
=

Ax+B

x2 + 1
+

C

x+ 1
+

D

x− 1

4 = (Ax+B)(x+ 1)(x− 1) + C(x2 + 1)(x− 1) +D(x2 + 1)(x+ 1)

plug in1 : 4 = 0 + 0 + 4D ⇒ D = 1

plug in − 1 : 4 = 0− 4C + 0 ⇒ C = −1

plug in 0 : 4 = −B − C +D = −B + 1 + 1 ⇒ B = −2

plug in 2 : 4 = 3(2A+B) + 5C + 15D = 6A− 6− 5 + 15 = 6A+ 4 ⇒ A = 0.

Thus we have A = 0, B = −2, C = −1, D = 1, and our integral is∫
4

x4 − 1
dx =

∫
−2

x2 + 1
+

1

x− 1
− 1

x+ 1
dx

= −2 arctan(x) + ln |(x− 1)| − ln |(x+ 1)|+ C.

Problem 3 (M3). Analyze the convergence of the following series.

(a)

∞∑
n=2

3(−1)n

n ln(n)
.

Solution: We first consider the absolute value of the terms, and get the series
∑

3
n lnn . We can’t

compare this to 1
n because 3

n ln(n) ≤
1
n , and being less than a divergent series doesn’t tell us anything.

In fact we don’t have any good options to compare it to, so instead we compute∫ +∞

2

1

x lnx
dx = lim

t→+∞

∫ t

2

1

x lnx
dx

= lim
t→+∞

∫ ln t

ln 2

1

u
du

= lim
t→+∞

lnu|ln t
ln 2 = lim

t→+∞
ln ln t− ln ln 2 = +∞

so by the integral test the series does not converge absolutely.

Now we consider the original, alternating series. The terms of this series are decreasing and tend to
zero, and the series is clearly alternating, so by the alternating series test the series converges. Thus
the series converges conditionally.

(b)

∞∑
n=1

(−1)n
5n + 3

3n − 2
.

Solution: The most obvious move is to use the Ratio Test. We compute

L = lim
n→∞

∣∣∣∣ (5n+1 + 3)/(3n+1 − 2)

(5n + 3)/(3n − 2)

∣∣∣∣
= lim

n→∞

∣∣∣∣ (5n+1 + 3)(3n − 2)

(5n + 3)(3n+1 − 2)

∣∣∣∣
= lim

n→∞

∣∣∣∣ (5 + 3/5n)(1− 2/3n)

(1 + 3/5n)(3− 2/3n)

∣∣∣∣
=

5

3
> 1

so by the ratio test this diverges.
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That limit is a little gross, though. It’s maybe better to just use the divergence test: we have
limn→∞

5n+3
3n−2 = ∞ so limn→∞(−1)n 5n+3

3n−2 ̸= 0, so by the divergence test this series diverges.

We can’t easily use the comparison test, because this series has some negative terms. The comparison
test can show it doesn’t converge absolutely, but can’t show it diverges altogether.

(c)

∞∑
n=1

(−1)n
n3 + n2 + n+ 1√

n9
.

Solution: We consider the absolute value of the terms of this series. The terms in

∞∑
n=1

∣∣∣∣(−1)n
n3 + n2 + n+ 1√

n9

∣∣∣∣ = ∞∑
n=1

n3 + n2 + n+ 1√
n9

are positive, so we can use the Limit Comparison Test. We have

lim
n→∞

(n3 + n2 + n+ 1)/
√
n9

1/
√
n3

= lim
n→∞

n9/2 + n7/2 + n5/2 + n3/2

n9/2
= lim

n→∞

1 + 1/n+ 1/n2 + 1/n3

1
= 1.

Thus by the Limit Comparison Test, our series converges if and only if
∑

1
n3/2 converges. But 3/2 > 1

so this converges, and thus our series converges (absolutely).

Problem 4 (M4). (a) Find a power series for 1
x3 (e

2x3 − 1), and write down the first three non-zero terms
explicitly.

Solution:

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ . . .

e2x
3

=

∞∑
n=0

2nx3n

n!
= 1 + 2x3 + 2x6 +

4

3
x9 + . . .

1

x3
(e2x

3

− 1) =

∞∑
n=1

2nx3n−3

n!

(
=
∑
n=0

2n+1x3n

(n+ 1)!

)
= 2 + 2x3 +

4

3
x6 + . . .

(b) Find a power series for x2 arctan(x2) centered at 0.

Solution: We know that arctan(x) =
∑∞

n=0(−1)n x2n+1

2n+1 . Thus

x2 arctan(x2) = x2
∞∑

n=0

(−1)n
(x2)2n+1

2n+ 1
=

∞∑
n=0

(−1)n
x4n+4

2n+ 1
.

(c) Find the degree-three Taylor polynomial for f(x) = 3
x3 centered at 3.

Solution: First we compute some derivatives:

f(x) =
3

x3
f(3) =

1

9

f ′(x) = −3
3

x4
f ′(3) = −1

9

f ′′(x) = (3)(4)
3

x5
f ′′(3) =

4

27

f ′′′(x) = −(3)(4)(5)
3

x6
f ′′′(3) = −20

81
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Then the Taylor polynomial is

T3(x, 3) =
1

9
− 1

9
(x− 3) +

4/27

2!
(x− 3)2 +

−20/81

3!
(x− 3)3.

Problem 5 (S1). Let g(x) = 5
√
x9 + x7 + x+ 1. Find (g−1)′(1).

Solution: We see that g(0) = 1, so g−1(1) = 0. Then by the Inverse Function Theorem we have

(g−1)′(1) =
1

g′(g−1(1))
=

1

g′(0)

g′(x) =
1

5
(x9 + x7 + x+ 1)−4/5(9x8 + 7x6 + 1)

g′(0) =
1

5
(1)(1) =

1

5

(g−1)′(1) = 5.

Problem 6 (S2). Compute lim
x→0

ex − tan(x)− 1

x2

Solution:

lim
x→0

ex − tan(x)− 1

x2
= lim

x→0

ex − sec2(x)

2x

= lim
x→0

ex − 2 sec2(x) tan(x)

2
=

1

2
.

Problem 7 (S3). Approximate

∫ 5

1

3x dx with four intervals and Simpson’s Rule.

Solution:∫ 5

1

f(x) dx ≈ 1

3
(f(1) + 4f(2) + 2f(3) + 4f(4) + f(5))∫ 5

1

3x dx ≈ 1

3

(
31 + 4 · 32 + 2 · 33 + 4 · 34 + 35

)
= 1 + 12 + 18 + 108 + 81 = 220.

Problem 8 (S4).

∫ +∞

1

1

x2 − 2x
dx

Solution:∫ +∞

1

1

x2 − 2x
dx = lim

t→+∞

∫ t

1

dx

x2 − 2x

= lim
t→+∞

∫ 2

1

dx

x(x− 2)
+

∫ t

2

dx

x(x− 2)

= lim
r→2−

∫ r

1

dx

x(x− 2)
+ lim

s→2+

∫ 3

s

dx

x(x− 2)
+ lim

t→+∞

∫ t

3

dx

x(x− 2)
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The integral converges if and only if each of these three integrals converges. But let’s consider the first one:

lim
r→2−

∫ r

1

dx

x(x− 2)
= lim

r→2−

1

2

∫ r

1

1

x− 2
− 1

x
dx

=
1

2
lim

r→2−
(ln |x− 2| − ln |x|)|r1

=
1

2
lim

r→2−
(ln(2− r)− ln(r)− ln(1)− ln(1))

=
1

2
lim

r→2−
(ln(2− r)− ln(r)) = −∞.

So one of the summands doesn’t converge, and thus the integral as a whole diverges.

Problem 9 (S5). Find the area of the surface obtained by rotating the curve x = 1 + 2y2 for 1 ≤ y ≤ 2
about the x-axis.

Solution: Recall we have the formula for surface area A =
∫
2πy ds when we rotate around the x-axis. We

will further integrate with respect to y because everything is given as a function of y. We get x′ = 4y, and
thus ds =

√
1 + 16y2, so

SA =

∫ 2

1

2πy
√
1 + 16y2 dy

u = 1 + 16y2, du = 32y dy

=

∫ 65

17

π

16

√
u du

=
π

16

2u3/2

3

∣∣65
17

=
π

24

(
65
√
65− 17

√
17
)
.

Problem 10 (S6). Find the (specific) solution to y′ = x2y3 if y(0) = 1.

Solution:

dy

dx
= x2y3

dy

y3
= x2 dx∫

dy

y3
=

∫
x2 dx

−1

2y2
=

x3

3
+ C

y2 =
−1

2x3/3 + 2C

Plugging in x = 0, y = 1 gives

1 =
−1

2C
C = −1/2

y =

√
−1

2x3/3− 1
=

√
1

1− 2x3/3
.

Problem 11 (S7). Compute lim
n→∞

2nn!

(2n)!
.
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Solution: 2nn! = 2 · 4 · 6 · · · · · 2n and (2n)! = 1 · 2 · 3 · 4 · · · · · 2n− 1 · 2n, so

0 ≤ 2nn!

(2n)!
=

1

1 · 3 · 5 · · · · · (2n− 1)
≤ 1

2n− 1

and since limn→∞ 0 = limn→∞
1

2n−1 = 0, by the Squeeze Theorem limn→∞
2nn!
(2n!) = 0.

Alternatively, we could notice that

0 ≤ 2nn!

(2n!)
=

2n

(n+ 1)(n+ 2) . . . (2n− 1)n
=

2

n+ 1

2

n+ 2
. . .

2

2n− 1

2

2n
≤ 1

n

and since limn→∞ 0 = limn→∞
1
n = 0, and thus by the Squeeze Theorem limn→∞

2nn!
(2n)! = 0.

Alternatively and a bit overpowered-ly, we could consider the series
∑∞

n=1
2nn!
(2n)! . Using the ratio test we

calculate

lim
n→∞

∣∣∣∣2n+1(n+ 1)!/(2n+ 2)!

2nn!/2n!

∣∣∣∣ = lim
n→∞

2(n+ 1)

(2n+ 1)(2n+ 2)
= lim

n→∞

1

2n+ 1
= 0.

Thus by the ratio test we see the series converges; and by the divergence test, if the series converges then
the sequence of terms must converge to zero.

Problem 12 (S8). Find the radius and interval of convergence of

∞∑
n=0

(x− 3)n

(2n)2 + 1
.

Solution: We use the ratio test to find the radius of convergence. We have

lim
n→∞

∣∣∣∣ (x− 3)n+1/((2n+ 1)2 + 1)

(x− 3)n/((2n)2 + 1)

∣∣∣∣ = lim
n→∞

|(x− 3)|(4n2 + 1)

4n2 + 4n+ 2
= |x− 3|.

Thus the series converges absolutely when |x− 3| < 1 and diverges when |x− 3| > 1, and thus it converges
absolutely on (2, 4).

When |x − 3| = 1 we have two points to check. If x = 4 then our series is
∑

1
(2n)2+1 which converges

by the comparison test, since 1
(2n)2+1 < 1

n2 . If x = 2 then our series is
∑ (−1)n

(2n)2+1 which converges by the

alternating series test. Thus the real interval of convergence is [2, 4].

Problem 13 (S9). Use a second-degree Taylor polynomial to approximate 4
√
82.

Solution: If g(x) = 4
√
1 + x, then by the binomial series we have g(x) ≈ 1 + x

4 − 3x2

32 . Then

4
√
82 = 4

√
81 + 1 = 3 4

√
1 + 1/81 ≈ 3

(
1 +

1

81 · 4
− 3

32 · 812

)
= 3 +

1

27 · 4
− 1

32 · 272

= 3 +
1

108
− 1

23328
=

70119

23328
≈ 3.00579.

Problem 14 (S10). Find an equation for the tangent line to the curve defined by the polar equation
r = 2 + sin(3θ) at the point θ = π/4.

Solution: We can use our polar equations to parametrize x and y as a function of θ:

x = 2 cos(θ) + cos(θ) sin(3θ)

y = 2 sin(θ) + sin(θ) sin(3θ)

x(π/4) =
√
2 + 1/2

y(π/4) =
√
2 + 1/2.
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Then we can use these parametric equations to find the derivatives of x and y:

dx

dθ
= −2 sin(θ)− sin(θ) sin(3θ) + 3 cos(θ) cos(3θ)

=
√
2 + 1/2− 3/2 =

√
2− 1

dy

dθ
= 2 cos(θ) + cos(θ) sin(3θ) + 3 sin(θ) cos(3θ)

= −
√
2− 1/2− 3/2 = −

√
2− 2.

Now we have two choices. First, we can write down a parametric equation for the tangent line. With the
slopes we have, this is straightforward. We get

r⃗(t) =
(√

2 + 1/2,
√
2 + 1/2

)
+ t
(√

2− 1,−
√
2− 2

)
=

(
√
2 + 1/2 + t

(√
2− 1

)
,
√
2 + 1/2 + t

(
−
√
2− 2

))

Alternatively, we can use our parametric derivatives to find the carterian derivative of y with respect to
x:

dy

dx
=

dy/dθ
dx/dθ

=
2 cos(θ) + cos(θ) sin(3θ) + 3 sin(θ) cos(3θ)

−2 sin(θ)− sin(θ) sin(3θ) + 3 cos(θ) cos(3θ)

=

√
2 + 1/2− 3/2

−
√
2− 1/2− 3/2

=

√
2− 1

−2−
√
2
.

And now that we have a slope, we can compute the implicit cartesian equation of this tangent line:

y − (
√
2 + 1/2) =

1−
√
2

2 +
√
2
(x− (

√
2 + 1/2)).
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