Math 1231 Practice Midterm Solutions

Instructor: Jay Daigle

- These are the instructions you will see on the real test, next week. I include them here so you know what to expect.
- You will have 75 minutes for this test.
- You are not allowed to consult books or notes during the test, but you may use a one-page, one-sided, handwritten cheat sheet you have made for yourself ahead of time.
- You may not use a calculator.
- This test has eight questions, over five pages. You should not answer all seven questions.
- The first two problems are two pages, representing topics M1 and M2. You should do both of them, and they are worth 30 points each.
- The remaining six problems represent topics S1 through S6. You will be graded on your best three, with a few possible bonus points if you also do well on the other two.
- Doing three secondary topics well is much better than doing five poorly.
- If you perform well on a question on this test it will update your mastery scores. Achieving a $27 / 30$ on a major topic or $9 / 10$ on a secondary topic will count as getting a 2 on a mastery quiz.

Problem 1 (M1). Compute the following using methods we have learned in class. Show enough work to justify your answers.
(a) Find the tangent line to $h(x)=\arcsin \left(e^{x}\right)$ at $\ln (1 / 2)$.
(b) $\int_{1}^{2} \frac{e^{1 / x}}{x^{2}} d x=$
(c) $\int \frac{\cos (x) \sin (x)}{1+\cos ^{4}(x)} d x=$

Problem 2 (M2). Compute the following integrals using methods we have learned in class. Show enough work to justify your answers.
(a) $\int \frac{2 x+1}{\sqrt{x^{2}-1}} d x$
(b) $\int x \sec ^{2} x d x$
(c) $\int_{0}^{1} \frac{3 x^{2}-6 x+1}{\left(x^{2}-x-1\right)(x-2)} d x$

Problem 3 (S1). Let $f(x)=\sqrt[3]{x^{5}+x^{4}+x^{3}+x^{2}+2 x}$. Find $\left(f^{-1}\right)^{\prime}(4)$.

Problem 4 (S2). Find $\lim _{x \rightarrow 0} \frac{2 \sin (x)-\sin (2 x)}{x-\sin (x)}$.

Problem 5 (S3). Use Simpson's rule and six intervals to estimate $\int_{0}^{6} x^{4} d x$. Give an upper bound for the error on this approximation.

Problem 6 (S4). Compute $\int_{1}^{10} \frac{1}{\sqrt[3]{x-2}} d x$.

Problem 7 (S5). Find the surface area of the surface obtained by rotating $y=\sqrt{5+4 x}$ for $-1 \leq x \leq 1$ about the x-axis.

Problem 8 (S6). Find a (specific) solution to the initial value problem $y^{\prime} / x-y=1$ if $y(0)=3$

