Math 1231 Practice Midterm Solutions

Instructor: Jay Daigle

- These are the instructions you will see on the real test, next week. I include them here so you know what to expect.
- You will have 75 minutes for this test.
- You are not allowed to consult books or notes during the test, but you may use a one-page, one-sided, handwritten cheat sheet you have made for yourself ahead of time.
- You may not use a calculator.
- This test has eight questions, over five pages. You should not answer all seven questions.
- The first two problems are two pages, representing topics M1 and M2. You should do both of them, and they are worth 30 points each.
- The remaining six problems represent topics S1 through S6. You will be graded on your best three, with a few possible bonus points if you also do well on the other two.
- Doing three secondary topics well is much better than doing five poorly.
- If you perform well on a question on this test it will update your mastery scores. Achieving a $27 / 30$ on a major topic or $9 / 10$ on a secondary topic will count as getting a 2 on a mastery quiz.

Problem 1 (M1). Compute the following using methods we have learned in class. Show enough work to justify your answers.
(a) Find the tangent line to $h(x)=\arcsin \left(e^{x}\right)$ at $\ln (1 / 2)$.

Solution: We have $h^{\prime}(x)=\frac{1}{\sqrt{1-e^{2 x}}} \cdot e^{x}$, so $h^{\prime}(\ln (1 / 2))=\frac{e^{\ln 1 / 2}}{\sqrt{1-e^{2 \ln (1 / 2)}}}=\frac{1 / 2}{\sqrt{1-1 / 4}}=\frac{1}{\sqrt{3}}$. We also have $h(\ln (1 / 2))=\arcsin (1 / 2)=\pi / 6$.
Thus the equation of the tangent line is

$$
y-\pi / 6=\frac{1}{\sqrt{3}}(x-\ln (1 / 2)) .
$$

(b) $\int_{1}^{2} \frac{e^{1 / x}}{x^{2}} d x=$

Solution: We take $u=1 / x$ so $d u=\frac{-1}{x^{2}} d x$. Then

$$
\begin{aligned}
\int_{1}^{2} \frac{e^{1 / x}}{x^{2}} d x & =\int_{1}^{1 / 2}-e^{u} d u \\
& =-\left.e^{u}\right|_{1} ^{1 / 2}=-e^{1 / 2}+e^{1}=e-\sqrt{e}
\end{aligned}
$$

(c) $\int \frac{\cos (x) \sin (x)}{1+\cos ^{4}(x)} d x=$

Solution: We can take $u=\cos (x)$ so that $d u=-\sin (x) d x$. Then

$$
\int \frac{\cos (x) \sin (x)}{1+\cos ^{4}(x)} d x=\int \frac{-u}{1+u^{4}} d u
$$

Then we can set $v=u^{2}$ so that $d v=2 u d u$ and we get

$$
\begin{aligned}
\int \frac{-u}{1+u^{4}} d u & =\int \frac{-1}{2} \frac{1}{1+v^{2}} d v=\frac{-1}{2} \arctan (v)+C \\
& =\frac{-1}{2} \arctan \left(u^{2}\right)+C=\frac{-1}{2} \arctan \left(\cos ^{2}(x)\right)+C
\end{aligned}
$$

Problem 2 (M2). Compute the following integrals using methods we have learned in class. Show enough work to justify your answers.
(a) $\int \frac{2 x+1}{\sqrt{x^{2}-1}} d x$

Solution: Since we see $\sqrt{x^{2}-1}$ we want to try a trig substitution. (You might try $u=x^{2}-1$ first, which almost works, but doesn't quite). So we set $x=\sec \theta$ and $d x=\sec \theta \tan \theta d \theta$. We have

$$
\begin{aligned}
\int \frac{2 x+1}{\sqrt{x^{2}-1}} d x & =\int \frac{2 \sec \theta+1}{\sqrt{\sec ^{2} \theta-1}} \sec \theta \tan \theta d \theta \\
& =\int \frac{2 \sec ^{2} \theta \tan \theta+\sec \theta \tan \theta}{\tan \theta} d \theta \\
& =\int 2 \sec ^{2} \theta+\sec \theta d \theta \\
& =2 \tan \theta+\ln |\sec \theta+\tan \theta|+C
\end{aligned}
$$

If $\sec \theta=x$ then θ is in a triangle with hypotenuse x and adjacent side 1 and thus opposite side $\sqrt{x^{2}-1}$. Thus $\tan \theta=\sqrt{x^{2}-1}$. This is good, since this formula appeared in our original question, and we see that

$$
\int \frac{2 x+1}{\sqrt{x^{2}-1}} d x=2 \sqrt{x^{2}-1}+\ln \left|x+\sqrt{x^{2}-1}\right|+C .
$$

(b) $\int x \sec ^{2} x d x$

Solution: We use integration by parts. Take $u=x, d v=\sec ^{2} x d x$ so $d u=d x, v=\tan x$. Then

$$
\int x \sec ^{2} x d x=x \tan x-\int \tan x d x=x \tan x+\ln |\cos x|+C .
$$

(c) $\int_{0}^{1} \frac{3 x^{2}-6 x+1}{\left(x^{2}-x-1\right)(x-2)} d x$

Solution: We use a partial fractions decomposition.

$$
\begin{aligned}
\frac{3 x^{2}-6 x+1}{\left(x^{2}-x-1\right)(x-2)} & =\frac{A}{x-2}+\frac{B x+C}{x^{2}-x-1} \\
3 x^{2}-6 x+1 & =A\left(x^{2}-x-1\right)+(B x+C)(x-2) .
\end{aligned}
$$

Plugging in $x=2$ gives us that $1=A$. Plugging in $x=0$ gives $1=-A-2 C=-1-2 C$ and thus $C=-1$. Then plugging in $x=1$ gives $-2=-A-B-C=-1-B+1$ and thus $B=2$. So we have

$$
\begin{aligned}
\int_{0}^{1} \frac{3 x^{2}-6 x+1}{\left(x^{2}-x-1\right)(x-2)} d x & =\int_{0}^{1} \frac{1}{x-2}+\frac{2 x-1}{x^{2}-x-1} d x \\
& =\left.\left(\ln |x-2|+\ln \left|x^{2}-x-1\right|\right)\right|_{0} ^{1} \\
& =\ln (1)+\ln (1)-\ln (2)-\ln (1)=-\ln (2) .
\end{aligned}
$$

Problem 3 (S1). Let $f(x)=\sqrt[3]{x^{5}+x^{4}+x^{3}+x^{2}+2 x}$. Find $\left(f^{-1}\right)^{\prime}(4)$.
Solution: Plugging in numbers, we see that $f(2)=\sqrt[3]{32+16+8+4+4}=\sqrt[3]{64}=4$. Then by the Inverse Function Theorem we have $\left(f^{-1}\right)^{\prime}(4)=\frac{1}{f^{\prime}(2)}$. But

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{3}\left(x^{5}+x^{4}+x^{3}+x^{2}+2 x\right)^{-2 / 3}\left(5 x^{4}+4 x^{3}+3 x^{2}+2 x+2\right) \\
& f^{\prime}(2)=\frac{1}{3}(64)^{-2 / 3}(80+32+12+4+2)=\frac{130}{48}=\frac{65}{24} .
\end{aligned}
$$

Thus by the inverse function theorem we have

$$
\left(f^{-1}\right)^{\prime}(4)=\frac{24}{65} .
$$

Problem 4 (S2). Find $\lim _{x \rightarrow 0} \frac{2 \sin (x)-\sin (2 x)}{x-\sin (x)}$.

Solution: $\lim _{x \rightarrow 0} 2 \sin (x)-\sin (2 x)=0-0=0$, and $\lim _{x \rightarrow 0} x-\sin (x)=0$, so we can use L'Hospital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{2 \sin (x)-\sin (2 x)}{x-\sin (x)} & ={ }^{\mathrm{L}^{\prime} \mathrm{H}} \lim _{x \rightarrow 0} \frac{2 \cos (x)-2 \cos (2 x)^{\nearrow^{0}}}{1-\cos (x)_{\searrow 0}} \\
& =\mathrm{L}^{\mathrm{L}^{\prime} \mathrm{H}} \lim _{x \rightarrow 0} \frac{-2 \sin (x)+4 \sin (2 x)^{\gamma^{0}}}{\sin (x)_{\searrow 0}} \\
& ={ }^{\mathrm{L}^{\prime} \mathrm{H}} \lim _{x \rightarrow 0} \frac{-2 \cos (x)+8 \cos (2 x)}{\cos (x)}=\frac{6}{1}=6 .
\end{aligned}
$$

Problem 5 (S3). Use Simpson's rule and six intervals to estimate $\int_{0}^{6} x^{4} d x$. Give an upper bound for the error on this approximation.

Solution:

$$
\begin{aligned}
\int_{0}^{6} x^{4} d x & \approx \frac{1}{3}\left(0^{4}+4 \cdot 1^{4}+2 \cdot 2^{4}+4 \cdot 3^{4}+2 \cdot 4^{4}+4 \cdot 5^{4}+6^{4}\right) \\
& =\frac{1}{3}(0+4+32+324+512+2500+1296)=\frac{4668}{3}=1556
\end{aligned}
$$

To find the error: if $f(x)=x^{4}$ then $f^{\prime \prime \prime \prime}(x)=24$, so we can take $L=24$. Then we have the formula

$$
\left|E_{S}\right| \leq \frac{L(b-a)^{5}}{180 n^{4}}=\frac{24 \cdot 6^{5}}{180 \cdot 6^{4}}=\frac{24 \cdot 6}{180}=\frac{4}{5}
$$

So the error in this approximation is less than or equal to $4 / 5$. If we work things out exactly, we see $\int_{0}^{6} x^{4} d x=1555.2$, so the error is in fact $4 / 5$ exactly.

Problem 6 (S4). Compute $\int_{1}^{10} \frac{1}{\sqrt[3]{x-2}} d x$.
Solution: We must split the integral up into two parts:

$$
\begin{aligned}
\int_{1}^{10} \frac{1}{\sqrt[3]{x-2}} d x & =\int_{1}^{2} \frac{1}{\sqrt[3]{x-2}} d x+\int_{2}^{10} \frac{1}{\sqrt[3]{x-2}} d x \\
& =\lim _{s \rightarrow 2^{-}} \int_{1}^{s} \frac{d x}{\sqrt[3]{x-2}}+\lim _{t \rightarrow 2^{+}} \int_{t}^{10} \frac{d x}{\sqrt[3]{x-2}} \\
& =\left.\lim _{s \rightarrow 2^{-}} \frac{3}{2}(x-2)^{2 / 3}\right|_{1} ^{s}+\left.\lim _{t \rightarrow 2^{+}} \frac{3}{2}(x-2)^{2 / 3}\right|_{t} ^{10} \\
& =\left(\lim _{s \rightarrow 2^{-}} \frac{3(s-2)^{2 / 3}}{2}-\frac{3}{2}\right)+\left(\lim _{t \rightarrow 2^{+}} \frac{3 \cdot 8^{2 / 3}}{2}-\frac{3(t-2)^{2 / 3}}{2}\right) \\
& =\frac{3}{2} \cdot 0-\frac{3}{2}+\frac{12}{2}-\frac{3}{2} \cdot 0=\frac{9}{2}
\end{aligned}
$$

Problem 7 (S5). Find the surface area of the surface obtained by rotating $y=\sqrt{5+4 x}$ for $-1 \leq x \leq 1$ about the x-axis.

Solution: We have $y^{\prime}=\frac{1}{2}(5+4 x)^{-1 / 2} \cdot 4=\frac{2}{\sqrt{5+4 x}}$, so $d s=\sqrt{1+\frac{4}{5+4 x}} d x$. Then

$$
\begin{aligned}
A & =\int_{-1}^{1} 2 \pi y d s=2 \pi \int_{-1}^{1} \sqrt{5+4 x} \sqrt{1+\frac{4}{5+4 x}} d x \\
& =2 \pi \int_{-1}^{1} \sqrt{5+4 x+4} d x=2 \pi \int_{-1}^{1} \sqrt{9+4 x} d x \\
& =\left.2 \pi\left(\frac{2}{3}(9+4 x)^{3 / 2} \cdot \frac{1}{4}\right)\right|_{-1} ^{1}=2 \pi\left(\frac{1}{6} 13 \sqrt{13}-\frac{1}{6} 5 \sqrt{5}\right)=\frac{\pi}{3}(13 \sqrt{13}-5 \sqrt{5}) .
\end{aligned}
$$

Problem 8 (S6). Find a (specific) solution to the initial value problem $y^{\prime} / x-y=1$ if $y(0)=3$

Solution:

$$
\begin{aligned}
& y^{\prime} / x=1+y \\
& \frac{d y}{1+y}=x d x \\
& \ln |1+y| x^{2} / 2+C \\
& 1+y=e^{x^{2} / 2} e^{C} \\
& y=K e^{x^{2} / 2}-1 \\
& 3=K-1 \Rightarrow K=4 \\
& y=4 e^{x^{2} / 2}-1 .
\end{aligned}
$$

