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1 Sequences and Series

In this section we’re going to introduce a completely new set of ideas. Well, sort of.

So far in calculus we’ve studied continuous things: functions, derivatives, and integrals.

What these all have in common is that you can chop them into pieces as small as you want.

In this section we’ll see what happens if we study continuous things, that genuinely have a

smallest possible size.

Conceptually, thinking about discrete things is easier: there are fewer things that can

happen, so everything is conceptually simpler. And in a real sense, the world as we perceive

it is basically discrete, since you’re never going to make infinitely many measurements.

So then. . . why did we start with the continuous version? It’s conceptually harder and

more artificial, but it is far, far easier to do computations in the continuous realm. So the

way we mostly solve real problems is to find a way to pretend our discrete question is really

continuous, and then solve the continuous question, and hope we can use that to answer our

original discrete question. We’ll see that throughout this section as well.

1.1 Sequences

Definition 1.1. A sequence of real numbers is a (usually infinite) ordered list of real num-

bers. We write (an)
∞
n=1 for the sequence

(a1, a2, a3, . . . )

where each an is a real number.

We can think of a sequence as the discrete equivalent of a function. In particular, a

sequence is a function from the natural numbers to the real numbers, where f(n) is the

nth element of the sequence. Thus it’s a function that only allows integer inputs, unlike

continuous functions that allow any real number as an input.

Example 1.2. A few examples of sequences. Some of these will look familiar:

(a) (1, 1, 1, 1, 1, . . . )

(b) (1, 2, 3, 4, . . . )

(c) (210, 17, 5814
√
311 − 1, 1, 1, 1, . . . )

(d) (1, 1, 2, 3, 5, 8, 13, . . . )

(e) (1, 1
2
, 1
3
, 1
4
, . . . )

(f) (3, 3.1, 3.14, 3.141, 3.1415, . . . )

(g) (1
2
, 2
3
, 3
4
, . . . )

(h) (1,
√
3
2
, 1
2
, 0,−1

2
,−

√
3
2
,−1, . . . )
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In most of these sequences the pattern is pretty obvious. In sequence (a) we have an = 1.

In sequence (b) we have an = n and in sequence (e) we have an = 1/n. Less obviously, in

sequence (g) we have n
n+1

and in (h) we have cos(nπ/6).

Figure 1.1: The graphs of (a), (b), (e), (g), (h)

However, not all sequences have nice descriptions like this. Sequence (d) is the fibonacci

sequence, which is defined “inductively” or “recursively” by f1 = 1, f2 = 1, fn = fn−1 + fn−2

for n ≥ 3. (This sequence was originally defined to work on problems about rabbit-breeding;

it appears often in nature).

Figure 1.2: The Fibonacci sequence is related to the Golden Ratio and to Pascal’s Triangle.

Left: Jahobr, CC0; Right: RDBury, CC BY-SA 3.0, both via Wikimedia Commons

Even worse are sequences like (c) which show no particular pattern at all; these are still

sequences.

Example 1.3. What is the general form of the sequence (1, 1
4
, 1
9
, 1
16
, . . . )? We see that

an = 1
n2 .
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What about (1, 1
2
, 1
4
, 1
8
, 1
16
, . . . ) ? an = 1

2n
.

We can see that some of these sequences look like they’re “going somewhere”—in fact,

sequence (a) is already there! But sequences (e), (f), and (g) all seem to be getting closer

and closer to some value.

When the terms of a sequence are getting closer and closer to some value, we say that it

has a limit. In particular, we say the sequence (an) has a limit L in the real numbers if we

can make the numbers an get as close to L as we want just by taking n to be sufficiently big.

Example 1.4. The sequence (1/n2) has a limit of 0.

The sequence 1/2n also has a limit of 0.

Just like with functions, we can use ϵ to make this definition more rigorous:

Definition 1.5. Let (an) be a sequence of real numbers. We say that (an) has a limit L,

and write limn→+∞ an = L, if, for every real number ϵ > 0, there is a natural number N

such that, whenever n ≥ N , |an − L| < ϵ.

If a sequence has a limit in the real numbers we say the sequence converges. Otherwise

we say the sequence diverges, and the limit does not exist.

Example 1.6. Prove that limn→+∞
1
n
= 0.

Fix some ϵ > 0. Then let N > 1/ϵ. If n ≥ N then 1
n
≤ 1

N
< ϵ, and thus |an − 0| < ϵ. So

by definition, limn→+∞
1
n
= 0.

Example 1.7. Prove that limn→+∞(−1)n does not exist.

Heuristically, we notice that this sequence “bounces around”; it doesn’t get closer to just

one value. Informally, the sequence has two different values it reaches infinitely often, so it

doesn’t have one single limit. But we can also make this rigorous with an ϵ−N argument:

For a limit to exist, a certain statement needs to be true for any positive real number.

So to prove that a limit does not exist we just need to find one real number for which the

statement is false.

So let ϵ = 1, and suppose a limit L exists. Then we can find a N such that if n ≥ N ,

then |(−1)n − L| < 1. In particular, we can find both even n and odd n, and so it must be

the case that |1−L| < 1 and | − 1−L| < 1. But there is no number L that makes this true.

So no limit exists.

Computing limits in this way is important, and a good exercise, but a bit painful. And

just like with functions, we have limit laws that make the process much easier.
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Proposition 1.8. If (an) and (bn) are convergent sequences and c is a constant, then

� lim
n→+∞

an ± bn = lim
n→+∞

an ± lim
n→+∞

bn

� limn→+∞ c = c

� limn→+∞ can = c limn→+∞ an

� limn→+∞ anbn = limn→+∞ an limn→+∞ bn

� limn→+∞
an
bn

= limn→+∞ an
limn→+∞ bn

if limn→+∞ bn ̸= 0.

� limn→+∞ apn = (limn→+∞ an)
p if p, an > 0.

Example 1.9. What is limn→+∞
n+1
n
?

We can write

lim
n→+∞

n+ 1

n
= lim

n→+∞
(1 +

1

n
)

= lim
n→+∞

1 + lim
n→+∞

1

n
= 1 + 0 = 1.

Example 1.10 (recitation). What is the limit of the sequence
√
n+ 1−

√
n?

Using a familiar trick from Calculus 1, we see

√
n+ 1−

√
n =

(
√
n+ 1 +

√
n)(

√
n+ 1−

√
n)√

n+ 1 +
√
n

=
n+ 1− n√
n+ 1 +

√
n

=
1√

n+ 1 +
√
n
.

Thus

lim
n→+∞

√
n+ 1−

√
n = lim

n→+∞

1√
n+ 1 +

√
n
= 0.

That last step was arguably a bit fuzzy. There are a few ways to make it rigorous; one is

to argue that our sequence “looks like” 1√
n
. In particular, our sequence is smaller than 1√

n

and 1√
n
→ 0, so our sequence should also get close to zero. We can make that precise with

the Squeeze Theorem:

Theorem 1.11 (Squeeze Theorem). If an ≤ bn ≤ cn for n ≥ n0 and limn→+∞ an =

limn→+∞ cn = L then limn→+∞ bn = L.
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To continue the earlier example, we have

lim
n→+∞

√
n+ 1−

√
n = lim

n→+∞

1√
n+ 1 +

√
n

0 ≤ 1√
n+ 1 +

√
n
≤ 1√

n
.

We know that limn→+∞ 0 = 0. And we can work out that

lim
n→+∞

1√
n
= lim

n→+∞

(
1

n

)1/2

=

(
lim

n→+∞

1

n

)1/2

= 01/2 = 0.

Then by the squeeze theorem, limn→+∞
1√

n+1+
√
n
= 0.

Example 1.12. What is limn→+∞
sinn
n

?

This is a classic use case for the Squeeze Theorem. We know that −1 ≤ sinn ≤ 1

for any n. So −1
n

≤ sinn
n

≤ 1
n
for any n. We know that limn→+∞

1
n

= 0, and similarly

limn→+∞
−1
n

= − limn→+∞
1
n
= 0. So by the squeeze theorem, limn→+∞

sinn
n

= 0.

But ultimately we can replace a lot of this with all the work we did with functions—since

a sequence is secretly just a function anyway.

Theorem 1.13. Suppose f(x) is a function such that f(n) = an for every natural number

n, and limx→+∞ f(x) = L. Then limn→+∞ an = L.

If limn→+∞ an = L and f is continuous at L, then

lim
n→+∞

f(an) = f(L).

Example 1.14. What is limn→+∞
n

n+1
? We see that if f(x) = x

x+1
, then f(n) = an, so we

can compute

lim
n→+∞

n

n+ 1
= lim

x→+∞
f(x) = lim

x→+∞

x/x

(x+ 1)/x
= lim

x→+∞

1

1 + 1/x
= 1.

Thus limn→+∞
n

n+1
= 1.

Example 1.15. What is limn→+∞
lnn
n
?

We write f(x) = lnx
x
, and then f(n) = an. By L’Hôpital’s rule, we have

lim
x→+∞

f(x) = lim
x→+∞

lnx

x
= lim

x→+∞

1/x

1
= lim

x→+∞

1

x
= 0.

Thus we also have that limn→+∞
lnn
n

= 0.
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However, this only works in one direction! If the function limit exists, then the sequence

limit exists. But the converse is not true.

Example 1.16. What is limn→+∞ sin(nπ)?

Naively, we might argue this: Let g(x) = sin(xπ). Then limx→+∞ g(x) does not exist,

since the function varies between −1 and 1 no matter how large we let x grow. Thus the

limit does not exist.

However, our theorem only applies when limx→+∞ g(x) exists; it tells us nothing if the

limit of our function does not converge. In fact, for every n we have sin(nπ) = 0, and thus

lim
n→+∞

sin(nπ) = lim
n→+∞

0 = 0.

But the real limitation is: not every sequence can be expressed reasonably as a function

of the real numbers at all.

Definition 1.17. If n is a natural number, we define n factorial, written n!, to be

n! = n · (n− 1) . . . 2 · 1.

This is the product of all positive integers less than or equal to n.

These will come up a lot in the remainder of this course.

Example 1.18. What is limn→+∞
n!
nn ?

We calculate that

an =
n!

nn
=

n(n− 1)(n− 2) . . . (2)(1)

n · n · n . . . n · n
=

1

n
· n(n− 1)(n− 2) . . . (2)

nn−1
.

It’s clear that the large fraction is between 0 and 1 since the numerator is positive, but

smaller than the denominator. Thus we have 0 ≤ an ≤ 1
n
, and limn→+∞ 0 = limn→+∞

1
n
= 0.

By the squeeze theorem, limn→+∞ an = 0.

And just like with functions, we sometimes have sequences wtih infinite limits.

Example 1.19. limn→+∞ n = +∞.

limn→+∞ −n2 = −∞.
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1.1.1 Completeness

There’s one important note I want to make here about the way sequences work, and the

importance of the real numbers.

We would like to say that every sequence either goes to infinity or has a (finite) limit.

Unfortunately, this isn’t the case, because a sequence can bounce up and down without ever

settling on one value (remember (−1)n). But if a sequence doesn’t “bounce around” then

we know it must either have a limit or go to infinity.

Definition 1.20. A sequence is (monotonically) increasing if an+1 ≥ an for all n. A sequence

is (monotonically) decreasing if an+1 ≤ an for all n. In either case we say that such a sequence

is monotonic.

A sequence is bounded above if there is an A such that an ≤ A for all n. A sequence is

bounded below if there is an A such that an ≥ A for all n. A sequence that is bounded above

and bounded below is bounded.

A monotone sequence doesn’t bounce around; a bounded sequence doesn’t go to infinity.

In the real numbers, a sequence with both of these properties must have a limit.

Fact 1.21. Every increasing sequence of real numbers that is bounded above converges to

some real number. Every decreasing sequence of real numbers that is bounded below converges

to some real number. In particular, every bounded monotonic sequence is convergent.

Remark 1.22. The idea here is that every sequence that “should” have a finite limit does. If

the terms get closer to each other, there is some limit they approach.

Example 1.23.
√
2,
√

2
√
2,

√
2
√

2
√
2, . . . .

If 0 ≤ x ≤ 2 then x ≤
√
2x ≤ 2. Thus since the first element is between 0 and 2, the

sequence is increasing, and every element is ≤ 2, so the sequence is bounded above by 2.

Thus it must converge.

Can we see what it must converge to? If we look at the sequence a2n/2 we have 1,
√
2,
√
2
√
2, . . .

and get the same sequence again, just “shifted by one.” So

L = lim
n→+∞

an = lim
n→+∞

a2n
2

=
(limn→+∞ an)

2

2
=

L2

2
.

Thus 2L = L2 and L = 2.

Alternatively we can notice that an = 21−
1
2n . Then

lim
n→+∞

an = lim
n→+∞

21−
1
2n = 2(limn→+∞ 1− 1

2n ) = 21−0 = 2.
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1.2 Series

In this section we will discuss a particular type of sequence called a series. Series are powerful

and flexible tools that show up in many places in mathematics; they are used to compute

approximations, they underlie integrals, and they are often used to solve differential equa-

tions.

But at base, we can think of a series as a sort of a discrete version of the integral. The

integral is “continuous”, which means it adds up values from every point in the domain; a

series will add up the values at only distinct, separated points in the domain.

Figure 1.3: Meme courtesy of @howie hua on Twitter

Definition 1.24. A series is a “sequence of partial sums.” That is, a series is a sequence

(sn)
+∞
n=1 where for some other real sequence (an) we have

sn = a1 + a2 + · · ·+ an =
n∑

i=1

ai.

If the sequence (sn) is convergent and limn→+∞ sn = s, then we say the series
∑

an

converges to s, which is the sum of the series. We write

∞∑
n=1

an = s or a1 + a2 + · · ·+ an + · · · = s.

If (sn) is divergent, then the series is also divergent.
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Example 1.25. A couple of the sequences we saw in the last section are “really” series.

� 1, 2, 3, . . . can be viewed as
∑∞

i=1 1.

� Any infinite decimal representation is really a series: we have

π = 3 + 1 · 10−1 + 4 · 10−2 + 1 · 10−3 + . . .

Example 1.26. 1
2
, 3
4
, 7
8
, . . . is the series

∑∞
i=1

1
2i
. We see that the partial sum sn =

∑n
i=1

1
2i
=

1− 1
2n
, and thus limn→+∞ sn = limn→+∞ 1− 1

2n
= 1− 0 = 1.

Remark 1.27. Notice that if the terms of a series are non-negative, then the sequence of

partial sums is monotone increasing. Thus a series of positive terms either converges, or

goes to infinity.

Example 1.28. The series
∑∞

n=1(−1)n has a sequence of partial sums (−1, 0,−1, 0, . . . ) and

thus neither converges nor goes to infinity. But the terms are not all non-negative.

1.2.1 Telescoping Series and the Fundamental Theorem of Calculus

Series are the discrete version of integrals, but in general they’re much harder to exactly

compute. This is because we don’t really have the Fundamental Theorem of Calculus—or

at least, not in a useful way.

It’s maybe worth thinking for a minute about what a discrete derivative would look like.

In the continuous case, we say that the derivative approximates
f(x+∆x)− f(x)

∆x
. Even

more informally, we say that f ′(x) is roughly the amount f increases if you increase x by

one. But that’s not quite right, because we’re actually taking a limit as ∆x gets very small,

and so ∆x can be much smaller than 1.

But in our discrete case, you can’t have steps smaller than one. So the equivalent of

the derivative would be
an+1 − an

(n+ 1)− (n)
= an+1 − an. This “difference quotient” is a perfectly

useful calculation that shows up in a lot of contexts, but we won’t talk about it much more

in this course.

If we want to use the Fundamental Theorem of Calculus, we’d need to find a way to write

the term inside our sum as a difference of two consecutive terms of a series. This is always

technically possible, since your series itself is a sequence with the right differences of terms.

But it’s only rarely possible to view your terms as the difference quotients of a useful series.

Example 1.29. What is
∑∞

n=2
1

n2−n
?
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Our sequence looks like
1

2
+

1

6
+

1

12
+ . . .

which looks like it converges. By doing a partial fraction decomposition, we can write
1

n2−n
= 1

n−1
− 1

n
. Then our partial sums are

sn =
n∑

i=2

1

i− 1
− 1

i

=

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ . . .

= 1− 1

n
.

Thus
∑n

i=2
1

n2−n
= limn→+∞ 1− 1

n
= 1.

A series that works like this is called a telescoping series.

Example 1.30. Consider the series
∑∞

n=1 log
(
n+1
n

)
. We can look at this as

∞∑
n=1

log(n+ 1)− log(n).

Then we can observe

sk =
k∑

n=1

log(n+ 1)− log(n)

=
(
log(k + 1)− log(k)

)
+
(
log(k)− log(k − 1)

)
+ · · ·+

(
log(3)− log(2)

)
+
(
log(2)− log(1)

)
= log(k + 1)− log(1).

lim
k→∞

sk = lim
k→∞

log(k + 1) = ∞.

Thus this sum diverges.

1.2.2 Series Rules

Just like with integrals, we can add series easily, and we can do scalar multiplication to them.

Proposition 1.31. If
∑

an and
∑

bn are convergent series, then

�

∑
can = c

∑
an.

�

∑
(an ± bn) =

∑
an ±

∑
bn.
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And just like with integrals, we technically can multiply series together, but it’s compli-

cated and hard to use: (
∞∑
n=0

an

)(
∞∑
n=0

bn

)
=

∞∑
n=0

n∑
k=0

akbn−k

This operation is sometimes referred to as convolution. It it is too complicated to be terribly

useful to us right now, but it often comes up in signal processing and more sophisticated

approaches to differential equations.

1.2.3 Geometric Series

There’s one more type of series that we can actually compute, which winds up being really

important. These series don’t actually telescope, but we can easily turn them into something

that does.

Definition 1.32. A geometric series is a series of the form
∞∑
n=1

arn−1 = a+ ar + ar2 + ar3 + . . .

for some real numbers a and r.

Some people prefer to think of a geometric series as
∑∞

n=1 ar
n. I’m one of them, actually,

but your textbook isn’t. It doesn’t really matter which convention you use as long as you’re

consistent.

Can we add these series up? Let’s cheat: we’ll assume it’s possible, and figure out what

the sum should be. So let’s start out assuming that
∑∞

n=1 ar
n−1 converges to some number

L. Then we have

rL =
∞∑
n=1

arn = ar + ar2 + r3 + . . .

= (−a) +
(
a+ ar + ar2 + ar3 + . . .

)
= −a+

∞∑
n=1

arn−1

= −a+ L

(r − 1)L = −a

L =
a

1− r
.

For some questions, this answer is fine. We already argued in example ?? that
∑∞

n=1
1
2n

=

1. This is a geometric series with a = r = 1
2
, and thus

∞∑
n=1

1

2n
=

1/2

1− 1/2
=

1/2

1/2
= 1.
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However, if we take this argument literally and don’t do any more work, it suggests

that
∑∞

n=1 2
n−1 = 1

1−2
= −1, which is clearly absurd. (Well, usually. There’s a trick called

“regularization” that physicists use this for). But the basic idea is sound. First, we’ve shown

that if the sume converges, it has to converge to a
1−r

. And second, we can make the same

argument a bit more carefully, paying attention to the limit, and getting something that

actually works.

Let sn =
∑n

i=1 ar
i−1 = a+ ar + ar2 + · · ·+ arn−1. Then

rsn =
n∑

i=1

ari = ar + ar2 + · · ·+ arn

= sn − a+ arn

(r − 1)sn = a(rn − 1)

sn = a
rn − 1

r − 1
.

We can think of this as a sort of anti-difference quotient: we have a closed-form formula for

the nth partial sum.

If we take the limit as n goes to infinity, this diverges if |r| ≥ 1. If |r| < 1, it converges,

and we get the formula limn→+∞ sn = a
1−r

. We summarize this result:

Proposition 1.33. If
∑∞

n=1 ar
n−1 is a geometric series and |r| < 1, then

∞∑
n=1

arn−1 =
a

1− r
.

If |r| ≥ 1 then the series diverges.

Example 1.34. What is
∑∞

n=1
2
3n
? This is a geometric series with a = 2

3
and r = 1

3
. (Note

that a = 2/3 because a is the first term of the series.) So

∞∑
n=1

2

3n
=

2/3

1− 1/3
= 1.

Example 1.35. What is
∑∞

n=1
2n

3
? This is a geometric series, this time with a = 2/3 and

r = 2. Since |2| ≥ 1 the series diverges.

We can also use this technique to turn infinite repeating decimals into integer fractions.

Example 1.36. Can we write 4.13 as a ratio of integers?

We have

4.13 = 4 +
13

100
+

13

1002
+

13

1003
+ . . .
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After the first term we have a geometric series with a = 13
100

and r = 1
100

, so the sum is

a

1− r
=

13/100

99/100
=

13

99
.

Thus

4.13 = 4 +
13

99
=

409

99
.

Example 1.37. Does
∑∞

n=1 3
2n22−3n converge or diverge?

This series looks like 9
2
+ 34

24
+ 36

27
+ . . . . This is a geometric series with a = 9

2
and r = 9

8
.

Thus |r| > 1 and so the series diverges.

1.2.4 The Harmonic Series

There’s one more series we can look at before we start building a general theory. This may

be the single most important specific example we have.

Example 1.38. One of the most important series is the harmonic series
∑∞

n=1
1
n
. (It

underlies among other things the Riemann zeta function which controls the distribution of

prime numbers). Does it converge or diverge?

There’s no really generalizable argument that applies here. But if sn =
∑n

i=1
1
n
is the

sequence of partial sums, then

s1 = 1 >
1

2

s2 = 1 +
1

2
> 2 · 1

2

s4 = 1 +
1

2
+

(
1

3
+

1

4

)
> 3 · 1

2

s8 = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
> 4 · 1

2
.

In particular, we see that s2n−1 > n
2
, and thus the sequence of partial sums increases without

bound, and diverges to +∞.

Remark 1.39. We will see that in some sense, the harmonic series is as small as it can get

and still diverge.

Example 1.40 (Bonus Example). The Kempner Series is the harmonic series, except we

leave out every term where a 9 appears in the denominator. We claim that this series

converges. (Yes, seriously. See also http://www.smbc-comics.com/index.php?id=3777).
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We divide the series up according to the number of digits in the denominator. Among

denominators with k digits, there are at most 8 · 9k−1 since there are eight possibilities for

the first digit (which cannot be 0 or 9) and 9 possibilities for the other digits (which cannot

be 9). And each number is at least 10k−1, so each term with k digits in the denominator is

at most 101−k.

Then if we sum up all the terms with k digits in the denominator, we have 8 · 9k−1 terms

each of which is at most 101−k and so our sum is at most 8·9k−1

10k−1 .

Now if we sum up the whole series, that’s the same as summing up each set of k-digit

denominators, and then summing all those sums. So we have

K ≤
∞∑
k=1

8
9k−1

10k−1
=

∞∑
k=1

8

(
9

10

)k−1

.

This right-hand sum should look familiar; it’s a geometric series. We have a = 8 and r = 9
10
,

so the sum is

K ≤
∞∑
k=1

8

(
9

10

)k−1

=
8

1− 9/10
= 80.

(A.J. Kempner first studied this series in 1914, and came up with the above argument.

In 1979 Robert Baille showed that K ≈ 22.9.)

Remark 1.41. In fact, if you take the harmonic series pick any string of digits, and remove

terms with that string in the denominator, you get a convergent series, for basically the same

reason.

1.3 The Divergence and Integral Tests

Now we can start building some general theoretical tools for understanding whether series

converge.

1.3.1 The Divergence test

In the last section, we showed the harmonic series diverged by showing it was bigger than an

infinite sum of a constant. This makes sense, because if you add the same number to itself

infinitely many times, you will never get a finite amount. In fact, series can only converge if

the terms get increasingly small as you go further into the series.

Proposition 1.42. If
∑∞

n=1 an converges, then limn→+∞ an = 0. Thus if limn→+∞ an ̸= 0,

or if the limit does not exist, then
∑∞

n=1 an does not converge.
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Remark 1.43. The converse is not true. The divergence test can be used to show a series

diverges; it cannot show that a series converges.

The divergence test winds up being a sort of first-pass filter. It lets us check that a series

diverges really quickly, but can never tell us that a series converges.

Example 1.44. Consider the series
∑∞

n=1 1. We can see that limn→+∞ 1 = 1 ̸= 0, so this

series diverges. (We can see that in other ways by seeing that it must go to ∞.)

Example 1.45. Consider the series
∑∞

n=1
n

n+1
. We can see that limn→+∞

n
n+1

= 1 ̸= 0. Thus

this series diverges.

Example 1.46. Consider the series
∑∞

n=1(−1)n. We can compute limn→∞(−1)n, but this

limit does not exist. Thus by the divergence test, the series diverges (as we saw in example

??).

Example 1.47. The divergence test tells us nothing about the harmonic series
∑∞

n=1
1
n
.

limn→+∞
1
n
= 0, so we have no information. But we know that the harmonic series diverges

by the argument in example ??.

This is a good example of how the divergence test can’t show us a series converges. The

harmonic series “passes” the divergence test: the terms go to zero. But that doesn’t mean

the series converges, and in fact it does not.

1.3.2 The Integral Test

So how can we tell that a series converges? Remember that we started this section with two

principles. First, series are the discrete equivalent of integrals. Second, whenever possible,

we want to convert discrete problems into continuous problems.

Example 1.48. Let’s look at the series
∑∞

n=1
1
n2 . The limit of the terms is limn→∞

1
n2 = 0,

so the divergence test doesn’t tell us anything. We can use a computer to calculate some

experimental values: we compute that
∑10

i=1
1
i2

≈ 1.55 and
∑1000

i=1
1
i2

≈ 1.64. This makes it

look like the series is converging; but can we prove it?

Let’s draw a picture (figure ??). Let f(x) = 1
x2 , and then the values of the sequence

we’re adding up are the points f(n). Treat each of these points as the right endpoint of a

rectangle of width one; then we see the integral of f from 1 to k is definitely larger than∑k
n=2

1
n2 . (We did leave out the first term of the series, but that doesn’t matter; since it’s

finite, it can’t affect whether our series converges.)
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Figure 1.4: Removing the first rectangle changes the value of the integral, but can’t affect

whether it’s finite or infinite.

Thus
k∑

n=2

1

n2
≤
∫ k

1

1

x2
dx =

−1

x
|k1 = 1− 1

k
.

Taking the limit gives a right hand side of 1, and thus the sum
∑∞

n=2
1
n2 is bounded and so

must converge.

Remark 1.49. It turns out that the exact sum of this series is π2/6 ≈ 1.64493. This was

first proven by Leonhard Euler in 1734, originally establishing his reputation. The proof

is moderately complicated and requires a number of tools relating to power series, which

we will discuss later in the course. (If you’re interested, look up the “Basel Problem” on

Wikipedia).

Example 1.50. Does the series
∑∞

n=1
1√
n
converge?

We can use the same rough process and roughly the same picture we just did. By taking

rectangles with left endpoints, we have

k∑
n=1

1√
n
≥
∫ k

1

1√
x
dx = 2

√
x|k1 =

√
k − 1.

Taking the limit of both sides shows that
∑∞

n=1
1√
n
≥ ∞ − 1, and thus increases without

bound.

We can build these types of argument into a general rule:

Proposition 1.51 (Integral Test). Suppose f is a continuous, positive, decreasing function

on [m,+∞) for some m. Let an = f(n). Then the series
∑∞

n=m an converges if and only if∫ +∞
m

f(x) dx converges. That is:

� If
∫∞
m

f(x) dx converges then
∑∞

n=m an converges.
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Figure 1.5: The series
∑

1√
n
diverges, because

∫∞
1

1√
x
dx diverges.

� If
∫∞
m

f(x) dx diverges then
∑∞

n=m an diverges.

Remark 1.52. Note that this doesn’t tell us what the sum of the series is, just that it exists.

In general, if we want to know the exact sum of a series we need a way to write a closed-form

formula for the sequence of partial sums, which is hard. This is what I meant when I said

that we don’t have a useful equivalent to the fundamental theorem of calculus.

Most of the rest of the tools we’ll develop in this class will only be used to establish that

some series converges at all. This on its own can be useful, and we’ll make it very useful in

section ?? when we discuss Power Series and Taylor Series.

Example 1.53. Does
∑∞

n=1
2n

n2+1
converge?

Let f(x) = 2x
x2+1

. Then f is clearly positive and continuous, and f ′(x) = 2(x2+1)−4x2

(x2+1)2
is

negative so f is decreasing. So we can use the integral test.∫ +∞

1

f(x) dx = lim
t→+∞

∫ t

1

2x

x2 + 1
dx

= lim
t→+∞

ln |x2 + 1||t1 = lim
t→+∞

ln |t2 + 1| − ln |2| = +∞.

So
∫ +∞
1

f(x) dx diverges, and thus so does
∑∞

n=1
2n

n2+1
.

Proposition 1.54. The series
∑∞

n=1
1
np converges if p > 1 and diverges if p ≤ 1.

Proof. If p = 1 this is the harmonic series, and we know it diverges.

If p ̸= 1 then f(x) = 1
xp is a positive, decreasing, continuous function, so we can use the

integral test. We have∫ +∞

1

1

xp
dx = lim

t→+∞

∫ t

1

x−p dx = lim
t→+∞

x1−p

1− p
|t1 = lim

t→+∞

t1−p

1− p
− 1

1− p
.

This converges precisely when 1− p < 0, precisely when p > 1.
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Example 1.55. Does
∑∞

n=1
n2−n

n4+3n3+n
converge?

We could technically use the integral test here. But that would, unfortunately, require

us to integrate x2−x
x4+3x3+x

. This is definitely possible using a partial fractions argument, but

it’s not fun and it’s not clean.

But we can try to argue something like this: We know that n2 − n < n2, and we know

that n4 + 3n3 + n > n4. This means that

n2 − n

n4 + 3n3 + n
<

n2

n4
=

1

n2

∞∑
n=1

n2 − n

n4 + 3n3 + n
<

∞∑
n=1

1

n2

and that series converges by the p-series test. This implies that our original series also

converges!

We did need the integral test to solve this last problem, because we used the integral test

to prove the p-series test and used the p-series test there. But this argument allowed us to

avoid having to integrate a difficult function.

1.4 The Comparison Tests

The integral test is powerful, and you can in theory answer nearly any question about positive

series with the divergence test and the integral test combined. But in practice, the integral

test can be really annoying to use, since we have to actually compute integrals. We want to

use the work we’ve already done to avoid having to do more work.

We can do that by comparing new series to old series we’ve already worked out, system-

atizing the argument we made in example ??.

Proposition 1.56 (Comparison Test). Suppose
∑∞

n=1 an and
∑∞

n=1 bn are series with posi-

tive terms. Then:

� If
∑∞

n=1 an converges and an ≥ bn for all (sufficiently large) n, then
∑∞

n=1 bn converges.

� If
∑∞

n=1 an diverges and an ≤ bn for all (sufficiently large) n, then
∑∞

n=1 bn diverges.

(This Comparison Test is the discrete analogue of the Comparison Test for improper

integrals we saw in section ??.)

Remark 1.57. Note that this only applies to series with positive terms. If a series has all pos-

itive terms, then either it goes to infinity or it converges (as a consequence of completeness,

see section ??). Comparison rules out going to infinity, so the series has to converge.
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But if we allow negative terms, there’s a third option: oscillating between multiple values.

For instance,
∑

1
2n

converges, and −1 ≤ 1
2n

for all n, but
∑∞

n=1(−1) does not converge.

We can rule out oscillation with something like the squeeze theorem, but that requires a

lot more work. This comparison test isn’t powerful enough to deal with non-positive series.

Using the comparison test requires us to have something to compare our series with. We

usually use a power series
∑

np or a geometric series
∑

arn−1.

Example 1.58. Does
∑∞

n=1
1

n3+n2+n+1
converge?

We know that n3 ≤ n3 + n2 + n+ 1, so 1
n3+n2+n+1

≤ 1
n3 . Since

∑
1
n3 converges, we know

that
∑∞

n=1
1

n3+n3+n+1
converges by the Comparison Test.

Example 1.59. Does
∑∞

n=1
lnn
n

converge?

We could use the integral test, but we can also comment that lnn ≥ 1 for n ≥ 3, so
lnn
n

≥ 1
n
. Since

∑∞
n=1

1
n
diverges, we know that

∑∞
n=1

lnn
n

diverges by the comparison test.

Example 1.60. Does
∑∞

n=1
1
n!

converge or diverge?

The obvious comparison to make is to observe that 1
n!

≤ 1
n
. But this doesn’t help us,

because
∑∞

n=1
1
n
diverges to infinity, and being less than something that goes to infinity

doesn’t tell us anything. But obviously 1
n!

is much smaller than 1
n
, so we can probably come

up with a better comparison.

For n > 3, we can work out that that n! > n2: n! = n(n − 1)(n − 2) . . . (3)(2)(1) ≥
n(n − 1)(n − 2) and (n − 1)(n − 2) > n. Therefore 1

n!
≤ 1

n2 , and
∑∞

n=1
1
n2 converges by the

p-series test. Thus the series
∑∞

n=1
1
n!

converges by the comparison test.

Alternatively: n! > 2n−1, and thus 1
n!

≤ 1
2n−1 . But

∑∞
n=1

1
2n−1 is a geometric series and

converges since r = 1/2 < 1, so by the comparison test
∑∞

n=1
1
n!

also converges.

Example 1.61. Does
∑∞

n=1
1

n3−n2+1
converge?

This is a lot harder to work with. The obvious comparison is ti 1
n3 , but it’s not actually

true that 1
n3−n2+1

≤ 1
n3 . (In fact, n3 > n3 − n2 + 1 for n > 1).

We can save it by fiddling with our comparison, and making the series we’re comparing

to bigger. Instead of 1/n3 we can try something like 2/n3. And it turns out that n3/2 <

n3 − n2 + 1 for n > 1, since n2 < n3/2 + 1. So 1
n3−n2+1

≤ 2
n3 . This shows that

∑∞
n=1

1
n3−n2+1

converges by the comparison test.

This argument worked, but it’s fiddly and annoying and seems like it must be too com-

plicated; we’d like to be able to say that 1
n3−n2+1

looks “basically like” 1
n3 and so they behave

the same. Fortunately there’s a way to make that work out.
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Proposition 1.62 (Limit Comparison Test). Suppose
∑

an and
∑

bn are series with positive

terms, and limn→+∞
an
bn

exists and is a finite, nonzero number. Then either both series

converge, or both series diverge.

Thus we have

lim
n→+∞

1/n3

1/(n3 − n2 + 1)
= lim

n→+∞

n3 − n2 + 1

n3
= 1,

and since
∑∞

n=1
1
n3 converges, so does

∑∞
n=1

1
n3−n2+1

.

Example 1.63. Does
∑∞

n=1
n2+1

n3+n2+1
converge?

We suspect we can compare this to n2

n3 , or in fact to 1
n
, which has matching top degree.

We check by calculating

lim
n→+∞

n2+1
n3+n2+1

1/n
= lim

n→+∞

n3 + n

n3 + n2 + 1
= lim

n→+∞

1 + n−2

1 + n−1 + n−3
= 1.

This is a real number between 0 and +∞. Thus, since
∑∞

n=1
1
n
does not converge, by the

limit comparison test
∑∞

n=1
n2+1

n3+n2+1
also diverges.

Example 1.64. Does
∑∞

n=1
n+5√

n5+n3+n
converge or diverge?

The numerator has the order of n and the denominator has the order of n5/2, so we want

to compare this to n
n5/2 = 1

n3/2 . So we calculate

lim
n→∞

n+5√
n5+n3+n

1/n3/2
= lim

n→∞

n5/2 + 5n3/2

√
n5 + n3 + n

= lim
n→∞

1 + 5/n√
1 + 1/n2 + 1/n4

= 1.

This is a real number in (0,∞), and thus the two series have the same convergence behavior.

Since 3/2 > 1, by the p-series test we know that
∑∞

n=1
1

n3/2 converges. So by the limit

comparison test,
∑∞

n=1
n+5√

n5+n3+n
converges.

Example 1.65. Does the series
∑∞

n=1
1

3n−2
converge or diverge?

We can’t really use the regular comparison test here; the obvious point of comparison is∑
1
3n
, but 1

3n−2
> 1

3n
. But we can compute

lim
n→∞

1/(3n − 2)

1/3n
= lim

n→∞

3n

3n − 2
= lim

n→∞

1

1− 2/3n
= 1.

Thus by the limit comparison test,
∑∞

n=1
1

3n−2
converges.

We could talk a lot more about limit comparison to a geometric series, but there’ll be a

better way to handle this in section ?? when we talk about the ratio test.
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1.5 Non-Positive Series

So far we’ve only discussed series with all positive terms, and we have a pretty good handle

on them: we use the integral test to work out some basic examples, and then solve others

with the comparison tests.

Things get a little trickier when we want to talk about series that include negative terms.

They can get very complicated, but we’ll start off with an easy type of example.

1.5.1 Alternating Series

Definition 1.66. An alternating series is a series whose terms are alternately positive and

negative: either all the odd terms are negative and the even terms are positive, or all the

even terms are negative and all the odd terms are positive.

Example 1.67. Some alternating series are

∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+ . . .

∞∑
n=1

(−1)n
n2

n+ 3
= −1

4
+

4

5
− 9

6
+

16

7
− . . .

Every alternating series
∑

an looks like
∑

(−1)n|an| or
∑

(−1)n−1|an|.
Alternating series are relatively easy to study, because they have such a regular pattern.

Fundamentally, an alternating series will go up, and then down, and then up again, but not

as high as at first. Each peak will be lower than the previous peak, and each low point will

be higher than the previous low point, as wee see in figure ??, so the series much converge

somewhere.

Figure 1.6: When we add up the terms of an alternating series, they oscillate up and down

around the limit of the series
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Proposition 1.68 (Alternating Series Test). If
∑∞

n=1(−1)n−1bn is an alternating series such

that bn+1 < bn for all (sufficiently large) n, and limn→+∞ bn = 0, then the series is convergent.

Sketch of Proof. The limit
∑∞

n=1(−1)n−1bn = b1 − (b2 − b3)− (b4 − b5)− · · · ≤ b1 is bounded

above, and (b1 − b2) + (b3 − b4) + . . . is increasing, so the sequence of even partial sums

(s2, s4, s6, . . . ) must converge to some limit. But s2n+1 has to be close to s2n, so the entire

sequence must converge.

Example 1.69. The alternating harmonic series 1− 1
2
+ 1

3
− 1

4
+ · · · =

∑∞
n=1

(−1)n−1

n
converges

by the alternating series test, since 1
n+1

< 1
n
and limn→+∞

1
n
= 0.

Example 1.70. The series
∑∞

n=1(−1)n−1 n
n+1

does not converge. The series is alternating,

but the alternating series test does not apply because limn→+∞
n

n+1
= 1 ̸= 0. In fact, we see

that limn→+∞(−1)n−1 n
n+1

does not exist, so by the divergence test this series diverges.

Example 1.71. The series
∑∞

n=1(−1)n n3

n4+2
converges. The sequence n3

n4+2
is decreasing, as

we can see by taking the derivative of f(x) = x3

x4+2
. Further, the limit is zero, so by the

alternating series test the series converges.

The Alternating Series Test, combined with the Divergence Test means that we can test

the convergence of (almost) any alternating series really easily. If the terms go to zero, it

converges by the alternating series test; if the terms don’t go to zero, it diverges by the

divergence test.

Thus normally the divergence test is a necessary but not sufficient condition. For an

alternating series specifically, it is both necessary and sufficient.

One other nice thing about alternating series is that we have a very good estimate of

how close we are to the true sum. That means we can calulate estimates fairly easily, and

know exactly how many terms we need to work out to be correct within our desired margin

of error.

Proposition 1.72 (Alternating Series Estimation). If s =
∑∞

n=1(−1)n−1bn is an alternating

series that satisfies the hypotheses of the Alternating Series Test, then |s− sn| ≤ bn+1.

Sketch of proof. As we saw in figure ??, each term we add moves us past the limit. So our

error at sn has to be less than the size of the move we’ll make by adding on the next term

bn+1.

Example 1.73. Consider the alternating series
∑∞

n=1
(−1)n

n
. What is the error term in

approximating the sum if we calculate the first ten terms?
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The size of the error is smaller than the next term, which is the eleventh term, which is
1
11
. Thus

∑10
n=1

(−1)n

n
≈ −.65 is within 1

11
of the infinite sum. In section ?? we will see that

the exact sum of this series is − log 2 ≈ −.69.

Example 1.74. Consider the alternating series
∑∞

n=1
(−1)n

n2 . What is the error term in

approximating the sum if we calculate the first ten terms?

The size of the error is smaller than the next term, which is the eleventh term, which is
1

121
. Thus

∑10
n=1

(−1)n

n2 ≈ −.818 is within 1
121

of the infinite sum, which turns out to be about

−.822 . . . .

Example 1.75. Consider the alternating series
∑∞

n=1
(−1)n

n2+2n+1
. How many terms do we have

to calculate to get the answer to within 1/100?

The ninth term has size 1
92+18+1

= 1
100

, so we need to compute the first eight terms. This

gives approximately −.1720, while the true answer is approximately −.1775.

1.5.2 Absolute Convergence

The alternating series test allowed us to study one particular type of series with non-positive

terms, but there are many non-positive series that aren’t alternating. It’s very difficult to

study them in general, but the idea of absolute convergence allows us to mostly duck the

question.

Definition 1.76. A series
∑

an is called absolutely convergent if
∑

|an| converges.
A series

∑
an is conditionally convergent if it is convergent but not absolutely convergent.

The series
∑

|an| is always non-negative, so we can use our tools from sections ?? and

?? to figure out whether this absolute-value series converges. But is that useful?

Theorem 1.77. If
∑

an is absolutely convergent, then it converges.

Proof. 0 ≤ an + |an| ≤ 2|an|, and an + |an| ≥ 0. We have
∑∞

n=1 2|an| converges, so by

comparision test
∑∞

n=1 an + |an| converges. But then
∞∑
n=1

an =
∞∑
n=1

(an + |an|)−
∞∑
n=1

an

is a difference of convergent series and so converges.

Remark 1.78. The converse is not true!
∑∞

n=1(−1)n/n is convergent (by the alternating

series test) but not absolutely convergent. This is why it’s possible, and in fact relatively

common, for a series to be conditionally convergent.
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This theorem lets us study many sequences with positive and negative terms.

Example 1.79. The series
∑∞

n=1
sinn
n2 is absolutely convergent. We have

∣∣ sinn
n2

∣∣ ≤ 1
n2 and∑∞

n=1
1
n2 converges, so by the comparison test

∑∣∣ sinn
n2

∣∣ converges.
Example 1.80. The alternating series

∑∞
n=1

(−1)n

n
converges by the alternating series test,

but
∑∞

n=1

∣∣∣ (−1)n

n

∣∣∣ =∑∞
n=1

1
n
diverges. So the series is conditionally convergent.

Example 1.81. The series
∑∞

n=1 sinn diverges by the divergence test, since limn→+∞ sinn

does not exist.

These are the three possible answers we can ever have: absolute convergence, conditional

convergence, and divergence.

Example 1.82. We claim that
∑∞

n=1(−1)n/n2 converges absolutely. For
∑∞

n=1 |(−1)n/n2| =∑∞
n=1 n

−2 which we know converges.

The main purpose of this is to take questions about series with some negative terms, and

turn them into questions about series with positive real terms, so that our previous tests

apply.

Example 1.83. Does the series
∑∞

n=1
sin(n2+en)

n2 converge?

We have that
∣∣∣ sin(n2+en)

n2−n

∣∣∣ =≤ 1
n2 , so by the comparison test this series converges absolutely.

Thus it converges.

As one final note: absolutely convergent series are much nicer and easier to handle than

series that are merely conditionally convergent.

Proposition 1.84. If a series is absolutely convergent, then the sum doesn’t depend on the

order of the terms. (In particular, the sum of a series of positive numbers doesn’t depend on

the order of the terms).

If a series is conditionally convergent but not absolutely convergent, then the sum does

depend on the order of the terms; and in fact by reordering the terms we can get essentially

any sum we like.

More precisely, the Riemann Series Theorem says that if
∑∞

n=1 an is a conditionally

convergent real series, then by reordering we can cause the sum to converge to any real

number, or to diverge to +∞ or −∞.

Example 1.85. It’s possible to compute that
∑∞

n=1
(−1)n−1

n
= ln 2. But we also have

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ · · · = 1

2
− 1

4
+

1

6
− 1

8
+ · · · = ln 2

2
.
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Proof. Suppose
∑∞

n=1 an is a conditionally convergent series of real numbers. Rewrite it as∑∞
n=1 bn −

∑∞
n=1 cn where the bn are all the positive terms and the cn are all the negative

terms. If both of these sums converged, then the series would converge absolutely (since∑
bn +

∑
cn =

∑
bn + cn =

∑
|an|); if one converged and the other diverged, then

∑
an

would diverge. So
∑

bn =
∑

cn = +∞.

Pick a target M . Arrange the sum as follows: include positive terms until the sum is

above M . Then include negative terms until the sum is below M . Repeat, alternating,

infinitely. The sum will oscillate around M and converge to M .

If we want the sum to approach +∞, include positive terms until the sum is above 1,

then a negative term, then positive terms until the sum is above 2, then a negative term,

and so on.

1.6 The Ratio and Root Tests

Once we know to look for absolute convergence, we can use the comparison test on any

series, but we’d like to cut out some steps.

1.6.1 The Ratio Test

If we imagine comparing our series to a geometric series, we get the ratio test :

Proposition 1.86 (Ratio Test). If
∑∞

n=1 an is a series and limn→∞

∣∣∣an+1

an

∣∣∣ = L, then:

� If L < 1 then the series
∑∞

n=1 an converges absolutely.

� If L > 1 then the series
∑∞

n=1 an diverges.

Remark 1.87. If limn→+∞

∣∣∣an+1

an

∣∣∣ = 1 or does not exist, then the ratio test tells us nothing.

We have to use some other test or technique.

This test tends to work well when our series looks “almost” geometric, meaning the terms

have nth powers in them, or when the terms contain factorials. It works badly when the

terms have additions and subtractions within them, or more generally when the terms look

polynomial rather than exponential.

Example 1.88. Analyze the convergence of
∑∞

n=1
1
n!
.

Since it has a factorial, this is a natural place to apply the ratio test. We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣1/(n+ 1)!

1/n!

∣∣∣∣ = lim
n→∞

1

n+ 1
= 0 < 1,

so by the ratio test this series converges absolutely.

http://jaydaigle.net/teaching/courses/2022-spring-1232/ 25

http://jaydaigle.net/teaching/courses/2022-spring-1232/


Jay Daigle George Washington University Math 1232: Single-Variable Calculus II

Example 1.89. Analyze the convergence of
∑∞

n=1
n!
nn .

Again, there are factorials so we want to use the ratio test. We have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)!/(n+ 1)n+1

n!/nn

∣∣∣∣ = lim
n→∞

(n+ 1)nn

(n+ 1)n+1
= lim

n→∞

(
n

n+ 1

)n

.

It’s maybe not immediately clear to us whether this converges, or to what. But we know

that

lim
n→∞

(
n+ 1

n

)n

= lim
n→∞

(
1 +

1

n

)n

= e

by our definition of e from section ??. Thus we have

lim

(
n

n+ 1

)n

=
1

limn→∞
(
n+1
n

)n =
1

e
< 1.

So by the ratio test this series converges absolutely.

Example 1.90. What about
∑∞

n=1
rn

n!
? For what r does it converge?

We still want to use the ratio test. We have

lim
n→∞

∣∣∣∣rn+1/(n+ 1)!

rn/n!

∣∣∣∣ = lim
n→∞

r

n+ 1
= 0 < 1.

By the ratio test, this converges absolutely for any r.

Example 1.91. Now let r > 0 be a real number. Does
∑∞

n=1
n!
rn

converge or diverge?

This is similar but opposite to the previous problem. We have

lim
n→∞

∣∣∣∣(n+ 1)!/rn+1

n!/rn

∣∣∣∣ = lim
n→∞

n+ 1

r
= +∞ > 1

so by the ratio test this diverges.

Example 1.92. Analyze the convergence of
∑∞

n=1
n2+1
2n

.

We compute

lim
n→∞

∣∣∣∣((n+ 1)2 + 1)/(2n+1)

(n2 + 1)(2n)

∣∣∣∣ = lim
n→∞

n2 + 2n+ 1

(n2 + 1) · 2
=

1

2
< 1.

So by the ratio test this converges.

1.6.2 The Root Test

The Root Test is similar to the ratio test, but is sometimes slightly easier or harder to apply

than the Ratio Test is.
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Proposition 1.93 (Root Test). If
∑∞

n=1 an is a series and limn→∞
n
√
|an| = L, then:

� If L < 1 then the series
∑∞

n=1 an converges absolutely.

� If L > 1 then the series
∑∞

n=1 an diverges.

Remark 1.94. If limn→+∞
n
√

|an| = 1 or does not exist, then the root test tells us nothing.

We have to use some other test or technique.

This is most useful when our series has an nth power of some polynomial involving n.

The root test works well if each term is a perfect nth power, and poorly if we have something

like n2n where some terms aren’t covered by the exponent. The ratio test works well if our

terms don’t have any additions or subtractions in them, but do have exponents.

Example 1.95. Analyze
∞∑
n=1

(
5n+ 1

2n+ 2

)n

.

We have an =
(
5n+1
2n+2

)n
and thus n

√
|an| = 5n+2

2n+2
. So limn→+∞

n
√
|an| = 5

2
> 1 so the series

converges absolutely.

Example 1.96. Analyze
∞∑
n=1

(
2n2 + 1

3n2 + 2n+ 1

)n

Our terms are perfect nth powers, so the root test seems natural. We compute

lim
n→∞

n

√∣∣∣∣ 2n2 + 1

3n2 + 2n+ 1

∣∣∣∣n
=

lim
n→∞

2n2 + 1

3n2 + 2n+ 1
=

2

3
< 1.

So by the Root Test this series converges absolutely.

Example 1.97. Analyze
∞∑
n=1

(
n

n+ 1

)n

.

Our terms are perfect nth powers, so we can try the root test. We compute

lim
n→∞

n

√∣∣∣∣ n

n+ 1

∣∣∣∣n = lim
n→∞

n

n+ 1
= 1

so the root test doesn’t tell us anything! We could try the ratio test, but it would be much

harder to apply and would give the same answer—the root and ratio tests always give the

same answer.

We could try either a comparison test or an integral test, but the integral seems nasty,

and I’m not sure what to compare it to. And at this point we realize we forgot the first rule

of series convergence: try the divergence test first! We have

lim
n→∞

(
n

n+ 1

)n

=
1

limn→∞
(
1 + 1

n

)n =
1

e
̸= 0.

So by the divergence test, this series diverges.
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