Math 1232: Single-Variable Calculus 2
 George Washington University Spring 2024 Recitation 1

Jay Daigle

January 19, 2024

Problem 1. (a) Is the function $f(x)=|x|$ one-to-one? Prove it is, or find a counterexample.
(b) Is the function $g(x)=5 x^{3}+3$ one-to-one? Prove it is, or find a counterexample.
(c) Find an inverses for any of these functions that were one-to-one.

Problem 2. Consider the function $f(x)=x^{4}$.
(a) Is this one-to-one?
(b) Can you find a smaller, restricted domain on which it's one-to-one?
(c) Find an inverse on your restricted domain.
(d) Can you find a completely different restricted domain? Find an inverse on that domain.

Problem 3. Consider $f(x)=\cos (x)$.
(a) Is this function one-to-one? Why or why not?
(b) What domains can you restrict it to to get a one-to-one function?
(c) What value "should" you pick to solve $\cos (x)=0$? What about $\cos (x)=1$? $\cos (x)=$ -1 ?
(d) What domain should you pick to create an inverse?

Problem 4. Let $f(x)=x^{5}+x$.
(a) Is this function one-to-one? You won't be able to prove it directly from the definition, but you can use calculus to make a clear argument.
(b) Can you find an inverse for this function?
(c) Can you find $f^{-1}(2)$? $f^{-1}(34)$? $f^{-1}(-2)$?
(d) Can you find $\left(f^{-1}\right)^{\prime}(2)$?
(e) Can you find $\left(f^{-1}\right)^{\prime}(34)$? $\left(f^{-1}\right)^{\prime}(-2)$?

