Math 1232: Single-Variable Calculus 2 George Washington University Spring 2024 Recitation 1

Jay Daigle

January 19, 2024

- **Problem 1.** (a) Is the function f(x) = |x| one-to-one? Prove it is, or find a counterexample.
 - (b) Is the function $g(x) = 5x^3 + 3$ one-to-one? Prove it is, or find a counterexample.
 - (c) Find an inverses for any of these functions that were one-to-one.

Problem 2. Consider the function $f(x) = x^4$.

- (a) Is this one-to-one?
- (b) Can you find a smaller, restricted domain on which it's one-to-one?
- (c) Find an inverse on your restricted domain.
- (d) Can you find a completely different restricted domain? Find an inverse on that domain.

Problem 3. Consider $f(x) = \cos(x)$.

- (a) Is this function one-to-one? Why or why not?
- (b) What domains can you restrict it to to get a one-to-one function?
- (c) What value "should" you pick to solve $\cos(x) = 0$? What about $\cos(x) = 1$? $\cos(x) = -1$?
- (d) What domain should you pick to create an inverse?

Problem 4. Let $f(x) = x^5 + x$.

- (a) Is this function one-to-one? You won't be able to prove it directly from the definition, but you can use calculus to make a clear argument.
- (b) Can you find an inverse for this function?
- (c) Can you find $f^{-1}(2)$? $f^{-1}(34)$? $f^{-1}(-2)$?
- (d) Can you find $(f^{-1})'(2)$?
- (e) Can you find $(f^{-1})'(34)$? $(f^{-1})'(-2)$?