Math 1232: Single-Variable Calculus 2
 George Washington University Spring 2024 Recitation 11

Jay Daigle

April 5, 2023

Problem 1 (Bessel Function). The Bessel function (of order 0) is critical to any physics done in cylindrical coordinates, and thus any physics that occurs on a cylinder. We saw it earlier as the solution to the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0$, but it can also be given by the power series:

$$
J_{0}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}
$$

What is the radius of convergence? What is the interval of convergence?
Problem 2. What is the interval of convergence of

$$
\sum_{n=0}^{\infty} \frac{n^{2}(x-1)^{n}}{7^{n+2}} ?
$$

Problem 3. Consider the function $f(x)=\frac{1}{1+x^{6}}$.
(a) Could you compute $\int \frac{1}{1+x^{6}} d x$? How?
(b) Does it help if I tell you that $1+x^{6}=\left(1+x^{2}\right)\left(x^{2}-\sqrt{3} x+1\right)\left(x^{2}+\sqrt{3} x+1\right)$?
(c) Now write a power series for $f(x)$ centered at 0 . What is the interval of convergence?
(d) Compute the integral of your power series. What is the interval of convergence there?

Problem 4. We want to compute $\int_{3}^{4} \frac{1}{1-(x-4)^{3}} d x$
(a) Find a power series for to compute $\frac{1}{1-(x-4)^{3}}$.
(b) Integrate the power series from 3 to 4 . Does this converge?
(c) Sum the first five terms to estimate $\int_{3}^{4} \frac{1}{1-(x-4)^{3}} d x$.
(d) Use an online integral calculator to find the integral. How close is your answer to the true answer?

