Math 1232: Single-Variable Calculus 2
 George Washington University Spring 2024 Recitation 14

Jay Daigle

April 26, 2023

Problem 1. Consider the curve $\vec{r}(t)=\left(\frac{t}{1+t}, \ln (1+t)\right)$.
(a) At what time does this curve pass through the origin?
(b) Does this curve hit the point $(2, \ln (3))$?
(c) Does it hit the point $(1 / 2, \ln (2))$?
(d) Try to sketch a graph of this curve. What do you know about it?
(e) Find a parametric equation for the tangent line to the curve at the time $t=3$. Find an implicit equation for the same line.
(f) Set up an integral to compute the length of the curve for $0 \leq 2 \leq 2$?

Problem 2. Let $\vec{r}(t)=\left(\cos ^{3}(t), \sin ^{3}(t)\right)$.
(a) Find the length of the curve for $0 \leq t \leq 2$.
(b) Did you get zero? Does that make any sense?
(c) Where did that go wrong? Can you fix it?

Problem 3. Consider the polar curve $r=e^{\theta}$.
(a) Sketch a graph of this curve.
(b) At what points (r, θ) does this intersect the x-axis?
(c) What are the Cartesian coordinates of the point where $\theta=4 \pi / 3$?
(d) Can we write this curve as a parametric equation?
(e) Find the points (r, θ) where the tangent line is horizontal.
(f) Find the points (r, θ) where the tangent line is vertical.

