Math 1232: Single-Variable Calculus 2
 George Washington University Spring 2024 Recitation 14

Jay Daigle

April 26, 2023

Problem 1. Consider the curve $\vec{r}(t)=\left(\frac{t}{1+t}, \ln (1+t)\right)$.
(a) At what time does this curve pass through the origin?
(b) Does this curve hit the point $(2, \ln (3))$?
(c) Does it hit the point $(1 / 2, \ln (2))$?
(d) Try to sketch a graph of this curve. What do you know about it?
(e) Find a parametric equation for the tangent line to the curve at the time $t=3$. Find an implicit equation for the same line.
(f) Set up an integral to compute the length of the curve for $0 \leq 2 \leq 2$?

Solution:

(a) $t=0$.
(b) No. We can either compute that if $y=\ln (3)$ then $t=2$ so $x=2 / 3$, or that if $x=2$ we have $2+2 t=t$ so $t=-2$ and $y=\ln (-1)$ is undefined.
(c) Yes. We can either compute that if $y=\ln (2)$ then $t=1$ so $x=1 / 2$, or that if $x=1 / 2$ then $1 / 2+t / 2=t$ so $t=1$ and thus $\ln (1+t)=\ln (2)$.
(d)

(e) We have

$$
\begin{aligned}
x(3) & =3 / 4 \\
y(3) & =\ln (4) \\
x^{\prime}(t) & =\frac{(1+t)-t}{(1+t)^{2}}=\frac{1}{(1+t)^{2}} \\
y^{\prime}(t) & =\frac{1}{1+t} \\
x^{\prime}(3) & =\frac{1}{16} \\
y^{\prime}(3) & =\frac{1}{4}
\end{aligned}
$$

So we get the parametric equation

$$
T(t)=(3 / 4, \ln (4))+t(1 / 16,1 / 4)
$$

or we can compute

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{1 / 4}{1 / 16}=4
$$

and get the implicit equation

$$
y-\ln (4)=4(x-3 / 4)
$$

(f) The arc length formula is

$$
\begin{aligned}
L & =\int_{0}^{2} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \\
& =\int_{0}^{2} \sqrt{\frac{1}{(1+t)^{4}}+\frac{1}{(1+t)^{2}}} d t
\end{aligned}
$$

Problem 2. Let $\vec{r}(t)=\left(\cos ^{3}(t), \sin ^{3}(t)\right)$.
(a) Find the length of the curve for $0 \leq t \leq 2$.
(b) Did you get zero? Does that make any sense?
(c) Where did that go wrong? Can you fix it?

Solution: g The obvious calculation is

$$
\begin{aligned}
x^{\prime}(t) & =3 \cos ^{2}(t)(-\sin (t)) \\
y^{\prime}(t) & =3 \sin ^{2}(t) \cos (t) \\
L & =\int_{0}^{2 \pi} \sqrt{9 \cos ^{4}(t) \sin ^{2}(t)+9 \sin ^{4}(t) \cos ^{2}(t)} d t \\
& =\int_{0}^{2 \pi} 3 \sin (t) \cos (t) \sqrt{\cos ^{2}(t)+\sin ^{2}(t)} d t \\
& =\int_{0}^{2 \pi} 3 \sin (t) \cos (t) d t=\left.\frac{3}{2} \sin ^{2}(t)\right|_{0} ^{2 \pi}=0-0=0
\end{aligned}
$$

But this doesn't make sense; the length shouldn't be zero!
We screwed up when we said $\sqrt{\sin ^{2}(t) \cos ^{2}(t)}=\sin (t) \cos (t)$. That only applies when the product is positive, and in this problem that really matters. So instead we want to compute

$$
\int_{0}^{2 \pi} 3|\sin (t) \cos (t)| d t
$$

The only reasonable way to do that is to split it up into pieces:

$$
\begin{aligned}
\int_{0}^{2 \pi} 3|\sin (t) \cos (t)| d t= & \int_{0}^{\pi / 2} 3 \sin (t) \cos (t) d t-\int_{\pi / 2}^{\pi} 3 \sin (t) \cos (t) d t \\
& +\int_{\pi}^{3 \pi / 2} 3 \sin (t) \cos (t) d t-\int_{3 \pi / 2}^{2 \pi} 3 \sin (t) \cos (t) d t \\
= & \left.\frac{3}{2} \sin ^{2}(t)\right|_{0} ^{\pi / 2}-\left.\frac{3}{2} \sin ^{2}(t)\right|_{\pi / 2} ^{\pi}+\left.\frac{3}{2} \sin ^{2}(t)\right|_{\pi} ^{3 \pi / 2}-\left.\frac{3}{2} \sin ^{2}(t)\right|_{3 \pi / 2} ^{2 \pi} \\
= & \left(\frac{3}{2}-0\right)-\left(0-\frac{3}{2}\right)+\left(\frac{3}{2}-0\right)-\left(0-\frac{3}{2}\right)=6
\end{aligned}
$$

Problem 3. Consider the polar curve $r=e^{\theta}$.
(a) Sketch a graph of this curve.
(b) At what points (r, θ) does this intersect the x-axis?
(c) What are the Cartesian coordinates of the point where $\theta=4 \pi / 3$?
(d) Can we write this curve as a parametric equation?
(e) Find the points (r, θ) where the tangent line is horizontal.
(f) Find the points (r, θ) where the tangent line is vertical.

Solution:

(a) Counterclockwise spiral.

(b) We would need $\theta=0$ or $\theta=\pi$, so we have $(1,0)$ and $\left(e^{\pi}, \pi\right)$. (It's not wrong to look at $\theta \geq 2 \pi$ but we don't generally by default.)
(c)

$$
\begin{aligned}
& x=r \cos (\theta)=e^{4 \pi / 3} \cos (4 \pi / 3)=-\frac{1}{2} e^{4 \pi / 3} \\
& y=r \sin (\theta)=e^{4 \pi / 3} \sin (4 \pi / 3)=\frac{\sqrt{3}}{2} e^{4 \pi / 3}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& x(\theta)=r \cos (\theta)=e^{\theta} \cos (\theta) \\
& y(\theta)=r \sin (\theta)=e^{\theta} \sin (\theta)
\end{aligned}
$$

(e)

$$
\begin{aligned}
& \frac{d x}{d \theta}=e^{\theta} \cos (\theta)-e^{\theta} \sin (\theta) \\
& \frac{d y}{d \theta}=e^{\theta} \sin (\theta)+e^{\theta} \cos (\theta) \\
& \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{\cos (\theta)+\sin (\theta)}{\cos (\theta)-\sin (\theta)}
\end{aligned}
$$

So we have a horizontal tangent line when

$$
\begin{aligned}
\cos (\theta)+\sin (\theta) & =0 \\
\cos (\theta) & =-\sin (\theta)
\end{aligned}
$$

And thus $\theta=3 \pi / 4$ or $\theta=7 \pi / 4$.
(f) We have a horizontal tangent line when

$$
\begin{aligned}
\cos (\theta)-\sin (\theta) & =0 \\
\cos (\theta) & =\sin (\theta)
\end{aligned}
$$

And thus $\theta=\pi / 4$ or $\theta=5 \pi / 4$.

