Math 1232: Single-Variable Calculus 2 George Washington University Spring 2024 Recitation 14

Jay Daigle

April 26, 2023

Problem 1. Consider the curve $\vec{r}(t) = \left(\frac{t}{1+t}, \ln(1+t)\right)$.

- (a) At what time does this curve pass through the origin?
- (b) Does this curve hit the point $(2, \ln(3))$?
- (c) Does it hit the point $(1/2, \ln(2))$?
- (d) Try to sketch a graph of this curve. What do you know about it?
- (e) Find a parametric equation for the tangent line to the curve at the time t = 3. Find an implicit equation for the same line.
- (f) Set up an integral to compute the length of the curve for $0 \le 2 \le 2$?

Solution:

- (a) t = 0.
- (b) No. We can either compute that if $y = \ln(3)$ then t = 2 so x = 2/3, or that if x = 2 we have 2 + 2t = t so t = -2 and $y = \ln(-1)$ is undefined.
- (c) Yes. We can either compute that if $y = \ln(2)$ then t = 1 so x = 1/2, or that if x = 1/2 then 1/2 + t/2 = t so t = 1 and thus $\ln(1+t) = \ln(2)$.

(e) We have

$$x(3) = 3/4$$

$$y(3) = \ln(4)$$

$$x'(t) = \frac{(1+t)-t}{(1+t)^2} = \frac{1}{(1+t)^2}$$

$$y'(t) = \frac{1}{1+t}$$

$$x'(3) = \frac{1}{16}$$

$$y'(3) = \frac{1}{4}$$

So we get the parametric equation

$$T(t) = (3/4, \ln(4)) + t(1/16, 1/4),$$

or we can compute

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1/4}{1/16} = 4$$

and get the implicit equation

$$y - \ln(4) = 4(x - 3/4).$$

(f) The arc length formula is

$$L = \int_0^2 \sqrt{x'(t)^2 + y'(t)^2} dt$$
$$= \int_0^2 \sqrt{\frac{1}{(1+t)^4} + \frac{1}{(1+t)^2}} dt.$$

Problem 2. Let $\vec{r}(t) = (\cos^3(t), \sin^3(t))$.

- (a) Find the length of the curve for $0 \le t \le 2$.
- (b) Did you get zero? Does that make any sense?
- (c) Where did that go wrong? Can you fix it?

Solution: g The obvious calculation is

$$x'(t) = 3\cos^{2}(t)(-\sin(t))$$

$$y'(t) = 3\sin^{2}(t)\cos(t)$$

$$L = \int_{0}^{2\pi} \sqrt{9\cos^{4}(t)\sin^{2}(t) + 9\sin^{4}(t)\cos^{2}(t)} dt$$

$$= \int_{0}^{2\pi} 3\sin(t)\cos(t)\sqrt{\cos^{2}(t) + \sin^{2}(t)} dt$$

$$= \int_{0}^{2\pi} 3\sin(t)\cos(t) dt = \frac{3}{2}\sin^{2}(t)\Big|_{0}^{2\pi} = 0 - 0 = 0.$$

But this doesn't make sense; the length shouldn't be zero!

We screwed up when we said $\sqrt{\sin^2(t)\cos^2(t)} = \sin(t)\cos(t)$. That only applies when the product is positive, and in this problem that really matters. So instead we want to compute

$$\int_0^{2\pi} 3|\sin(t)\cos(t)|\,dt.$$

The only reasonable way to do that is to split it up into pieces:

$$\int_{0}^{2\pi} 3|\sin(t)\cos(t)| dt = \int_{0}^{\pi/2} 3\sin(t)\cos(t) dt - \int_{\pi/2}^{\pi} 3\sin(t)\cos(t) dt + \int_{\pi}^{3\pi/2} 3\sin(t)\cos(t) dt - \int_{3\pi/2}^{2\pi} 3\sin(t)\cos(t) dt - \int_{3\pi/2}^{2\pi} 3\sin(t)\cos(t) dt = \frac{3}{2}\sin^{2}(t)\Big|_{0}^{\pi/2} - \frac{3}{2}\sin^{2}(t)\Big|_{\pi/2}^{\pi} + \frac{3}{2}\sin^{2}(t)\Big|_{\pi}^{3\pi/2} - \frac{3}{2}\sin^{2}(t)\Big|_{3\pi/2}^{2\pi} = \left(\frac{3}{2} - 0\right) - \left(0 - \frac{3}{2}\right) + \left(\frac{3}{2} - 0\right) - \left(0 - \frac{3}{2}\right) = 6.$$

Problem 3. Consider the polar curve $r = e^{\theta}$.

- (a) Sketch a graph of this curve.
- (b) At what points (r, θ) does this intersect the x-axis?
- (c) What are the Cartesian coordinates of the point where $\theta = 4\pi/3$?
- (d) Can we write this curve as a parametric equation?
- (e) Find the points (r, θ) where the tangent line is horizontal.
- (f) Find the points (r, θ) where the tangent line is vertical.

Solution:

(a) Counterclockwise spiral.

(b) We would need $\theta = 0$ or $\theta = \pi$, so we have (1,0) and (e^{π}, π) . (It's not wrong to look at $\theta \geq 2\pi$ but we don't generally by default.)

(c)

$$x = r\cos(\theta) = e^{4\pi/3}\cos(4\pi/3) = -\frac{1}{2}e^{4\pi/3}$$
$$y = r\sin(\theta) = e^{4\pi/3}\sin(4\pi/3) = \frac{\sqrt{3}}{2}e^{4\pi/3}.$$

(d)

$$x(\theta) = r\cos(\theta) = e^{\theta}\cos(\theta)$$
$$y(\theta) = r\sin(\theta) = e^{\theta}\sin(\theta)$$

(e)

$$\frac{dx}{d\theta} = e^{\theta} \cos(\theta) - e^{\theta} \sin(\theta)$$
$$\frac{dy}{d\theta} = e^{\theta} \sin(\theta) + e^{\theta} \cos(\theta)$$
$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\cos(\theta) + \sin(\theta)}{\cos(\theta) - \sin(\theta)}.$$

So we have a horizontal tangent line when

$$\cos(\theta) + \sin(\theta) = 0$$
$$\cos(\theta) = -\sin(\theta)$$

And thus $\theta = 3\pi/4$ or $\theta = 7\pi/4$.

(f) We have a horizontal tangent line when

$$\cos(\theta) - \sin(\theta) = 0$$
$$\cos(\theta) = \sin(\theta)$$

And thus $\theta = \pi/4$ or $\theta = 5\pi/4$.