Math 1232: Single-Variable Calculus 2 George Washington University Spring 2024 Recitation 2

Jay Daigle

January 26, 2024

Problem 1. (a) Compute $\log_3(6) + \log_3(9/2)$.

- (b) Compute $\log_4(8) \log_4(2)$.
- (c) Rewrite the expression $\log_5(15) + \log_5(75) \log_5(12)$ as an integer plus a logarithm.

(d) Solve
$$e^{5-3s} = 10$$
.

Problem 2. Compute the derivative of $(x+1)^{\sqrt{x}}$.

Problem 3 (Bonus). Use logarithmic differentiation to compute $\frac{d}{dx} \frac{x^3 \sqrt{x^2 - 5}}{(x+4)^3}$.

Problem 4. Consider the integral $\int_{e}^{e^4} \frac{1}{x\sqrt{\ln x}} dx$.

(a) We're going to have to do a u-substitution here. What u looks like it should work?

- (b) What do we need to change the bounds to when we do the *u*-substitution?
- (c) Compute $\int_{e}^{e^4} \frac{1}{x\sqrt{\ln x}} dx.$
- (d) Now try computing $\int \frac{1}{x\sqrt{\ln x}} dx$ to get the antiderivative.
- (e) Now plug e^4 and e in to your antiderivative. What do you notice? How is this related to part (c)?

Problem 5. Compute the following integrals.

- (a) $\int e^x \cos(1+e^x) dx$.
- (b) $\int \frac{\ln(x)}{x} dx$.

Problem 6 (Challenge). Compute $\int \frac{dx}{1+e^x}$.