Math 1232: Single-Variable Calculus 2
 George Washington University Spring 2024 Recitation 2

Jay Daigle

January 26, 2024

Problem 1. (a) Compute $\log _{3}(6)+\log _{3}(9 / 2)$.
(b) Compute $\log _{4}(8)-\log _{4}(2)$.
(c) Rewrite the expression $\log _{5}(15)+\log _{5}(75)-\log _{5}(12)$ as an integer plus a logarithm.
(d) Solve $e^{5-3 s}=10$.

Problem 2. Compute the derivative of $(x+1)^{\sqrt{x}}$.
Problem 3 (Bonus). Use logarithmic differentiation to compute $\frac{d}{d x} \frac{x^{3} \sqrt{x^{2}-5}}{(x+4)^{3}}$.
Problem 4. Consider the integral $\int_{e}^{e^{4}} \frac{1}{x \sqrt{\ln x}} d x$.
(a) We're going to have to do a u-substitution here. What u looks like it should work?
(b) What do we need to change the bounds to when we do the u-substitution?
(c) Compute $\int_{e}^{e^{4}} \frac{1}{x \sqrt{\ln x}} d x$.
(d) Now try computing $\int \frac{1}{x \sqrt{\ln x}} d x$ to get the antiderivative.
(e) Now plug e^{4} and e in to your antiderivative. What do you notice? How is this related to part (c)?

Problem 5. Compute the following integrals.
(a) $\int e^{x} \cos \left(1+e^{x}\right) d x$.
(b) $\int \frac{\ln (x)}{x} d x$.

Problem 6 (Challenge). Compute $\int \frac{d x}{1+e^{x}}$.

