Math 1232: Single-Variable Calculus 2
 George Washington University Spring 2024 Recitation 2

Jay Daigle

January 26, 2024

Problem 1. (a) Compute $\log _{3}(6)+\log _{3}(9 / 2)$.
(b) Compute $\log _{4}(8)-\log _{4}(2)$.
(c) Rewrite the expression $\log _{5}(15)+\log _{5}(75)-\log _{5}(12)$ as an integer plus a logarithm.
(d) Solve $e^{5-3 s}=10$.

Solution:

(a) $\log _{3}(6)+\log _{3}(9 / 2)=\log _{3}(6 \cdot 9 / 2)=\log _{3}(27)=3$.
(b) $\log _{4}(8)-\log _{4}(2)=\log _{4}(4)=1$.

Alternatively $\log _{4}(8)-\log _{4}(2)=1.5-.5=14$.
(c)

$$
\begin{aligned}
\log _{5}(15)+\log _{5}(75)-\log _{5}(12) & =\log _{5}(15 \cdot 75 / 12) \\
& =\log _{5}\left(\frac{3}{4} \cdot 125\right)=\log _{5}(125)+\log _{5}(3 / 4)=3+\log _{5}(3 / 4) .
\end{aligned}
$$

You could also write this as $3+\log _{5}(3)-\log _{5}(4)$ if you want.
(d) The problem here is that there's a variable in the exponent. To deal with difficult exponents, we take a logarithm. Then we see that $5-3 x=\ln 10$ and so $x=\frac{5-\ln 10}{3}$.

Problem 2. Compute the derivative of $(x+1)^{\sqrt{x}}$.

Solution: We can't do this from the derivative rules we already have. But we can use logarithms!

$$
\begin{aligned}
y & =(x+1)^{\sqrt{x}} \\
\ln |y| & =\ln \left|(x+1)^{\sqrt{x}}\right|=\sqrt{x} \ln |x+1| \\
\frac{y^{\prime}}{y} & =\frac{1}{2 \sqrt{x}} \ln |x+1|+\frac{\sqrt{x}}{|x+1|} \\
y^{\prime} & =y\left(\frac{1}{2 \sqrt{x}} \ln |x+1|+\frac{\sqrt{x}}{|x+1|}\right) \\
& =(x+1)^{\sqrt{x}}\left(\frac{1}{2 \sqrt{x}} \ln |x+1|+\frac{\sqrt{x}}{|x+1|}\right) .
\end{aligned}
$$

Problem 3 (Bonus). Use logarithmic differentiation to compute $\frac{d}{d x} \frac{x^{3} \sqrt{x^{2}-5}}{(x+4)^{3}}$.

Solution:

$$
\begin{aligned}
y & =\frac{x^{3} \sqrt{x-5}}{(x+4)^{3}} \\
\ln |y| & =\ln \left|\frac{x^{3} \sqrt{x^{2}-5}}{(x+4)^{3}}\right| \\
& =3 \ln |x|+\frac{1}{2} \ln \left|x^{2}-5\right|-3 \ln |x+4| \\
\frac{y^{\prime}}{y} & =\frac{3}{x}+\frac{1}{2} \frac{2 x}{x^{2}-5}-\frac{3}{x+4} \\
y^{\prime} & =y\left(\frac{3}{x}+\frac{1}{2} \frac{2 x}{x^{2}-5}-\frac{3}{x+4}\right) \\
& =\frac{x^{3} \sqrt{x^{2}-5}}{(x+4)^{3}}\left(\frac{3}{x}+\frac{x}{x^{2}-5}-\frac{3}{x+4}\right) .
\end{aligned}
$$

If we want we can even simplify this to

$$
y^{\prime}=\frac{3 x^{2} \sqrt{x^{2}-5}}{(x+4)^{3}}+\frac{x^{4}}{(x+4)^{3} \sqrt{x^{2}-5}}-\frac{3 x^{3} \sqrt{x^{2}-5}}{(x+4)^{4}}
$$

Problem 4. Consider the integral $\int_{e}^{e^{4}} \frac{1}{x \sqrt{\ln x}} d x$.
(a) We're going to have to do a u-substitution here. What u looks like it should work?
(b) What do we need to change the bounds to when we do the u-substitution?
(c) Compute $\int_{e}^{e^{4}} \frac{1}{x \sqrt{\ln x}} d x$.
(d) Now try computing $\int \frac{1}{x \sqrt{\ln x}} d x$ to get the antiderivative.
(e) Now plug e^{4} and e in to your antiderivative. What do you notice? How is this related to part (c)?

Solution:

(a) We take $u=\ln (x)$, and $d u=\frac{d x}{x}$. This seems plausible because $\ln (x)$ is on the inside of a function.
(b) $\ln (e)=1$ and $\ln \left(e^{4}\right)=4$, so we have to integrate from 1 to 4 .
(c)

$$
\int_{e}^{e^{4}} \frac{1}{x \sqrt{\ln x}} d x=\int_{1}^{4} \frac{1}{\sqrt{u}} d u=\left.2 \sqrt{u}\right|_{1} ^{4}=4-2=2
$$

(d)

$$
\int \frac{1}{x \sqrt{\ln x}} d x=\int \frac{1}{\sqrt{u}} d u=2 \sqrt{u}+C=2 \sqrt{\ln (x)}+C
$$

(e) We get $2 \sqrt{\ln \left(e^{4}\right)}=2 \sqrt{4}=4$ and $2 \sqrt{\ln (e)}=2 \sqrt{1}=2$, which are the same numbers we got before. And specifically, you see we get 4 and 1 as intermediate answers here-these are the same numbers we got by doing the change of bounds.

Problem 5. Compute the following integrals.
(a) $\int e^{x} \cos \left(1+e^{x}\right) d x$.
(b) $\int \frac{\ln (x)}{x} d x$.

Solution:

(a) Take $u=1+e^{x}$ so $d u=e^{x} d x$. Then

$$
\int e^{x} \cos \left(1+e^{x}\right) d x=\int \cos (u) d u=\sin (u)+C=\sin \left(1+e^{x}\right)+C
$$

(b) This one looks tricky, and you might have to mess around with it a bit to see, and try different things. But if we take $u=\ln (x)$ so that $d u=\frac{1}{x} d x$, we see this is

$$
\int u d u=\frac{u^{2}}{2}+C=\frac{(\ln |x|)^{2}}{2}+C .
$$

Problem 6 (Challenge). Compute $\int \frac{d x}{1+e^{x}}$.

Solution: This problem becomes much easier if we multiply the top and bottom by e^{-x}. Then we have $\int \frac{e^{-x}}{e^{-x}+1} d x$. Set $u=e^{-x}$ so that $d u=-e^{-x} d x$ and we have

$$
\int \frac{e^{-x}}{e^{-x}+1} d x=-\int \frac{d u}{1+u}=-\ln (1+u)=-\ln \left(1+e^{-x}\right)
$$

Alternatively, we can take $u=e^{x}, d u=e^{x} d x$, and have

$$
\int \frac{d x}{1+e^{x}}=\int \frac{d u}{u(u+1)} .
$$

Again nonobviously, we write

$$
\begin{aligned}
\int \frac{d u}{u(u+1)}=\int \frac{1+u-u}{u(u+1)} d u & =\int \frac{1+u}{u(u+1)} d u-\int \frac{u}{u(u+1)} d u \\
& =\int \frac{d u}{u}-\int \frac{d u}{u+1} \\
& =\ln (u)-\ln (u+1)=\ln \left(e^{x}\right)-\ln \left(e^{x}+1\right)
\end{aligned}
$$

Using properties of logs, you can check that this is the same as the previous answer. Or, if you prefer, you can write $x-\ln \left(e^{x}+1\right)$.

