Math 1232: Single-Variable Calculus 2
 George Washington University Spring 2023 Recitation 3

Jay Daigle

February 2, 2024

Problem 1. (a) Compute $\sin (\arctan (5))$.
(b) Compute $\frac{d}{d x} \arccos (\sqrt{x})$
(c) Compute $\frac{d}{d x} \arctan (x+\sec (x))$

Problem 2. Compute the following integrals:
(a) $\int \frac{\arcsin (x)}{\sqrt{1-x^{2}}} d x$.
(b) $\int_{0}^{1} \frac{e^{2 x}}{1+e^{4 x}} d x$.
(c)

Problem 3. (a) In class, we saw that $\lim _{x \rightarrow+\infty} \frac{\ln (x)}{x}=0$. What is $\lim _{x \rightarrow+\infty} \frac{\ln \left(x^{2}\right)}{x}$?
(b) Compute $\lim _{x \rightarrow+\infty} \frac{\ln \left(x^{n}\right)}{x}$ for $n>0$.
(c) Compute $\lim _{x \rightarrow+\infty} \frac{\ln (x)}{x^{\epsilon}}$ for $\varepsilon>0$.
(d) What do parts (a-c) tell you about the relationship between polynomials and $\ln (x)$?
(a) In class we saw that $\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}=+\infty$. Compute $\lim _{x \rightarrow+\infty} \frac{e^{x}}{x^{2}}$.
(b) Compute $\lim _{x \rightarrow+\infty} \frac{e^{x}}{x^{n}}$ for $n>0$.
(c) What do parts (e-f) tell you about the relationship between e^{x} and polynomials?

Problem 4. (a) We want to compute $\lim _{x \rightarrow \pi / 2} \sec (x)-\tan (x)$.
(b) Can we use L'Hospital's Rule on this as written? Can we change it to a form where L'Hospital's Rule works?
(c) What is the limit?

Problem 5. Let's compute $\lim _{x \rightarrow 0^{+}} x^{\frac{1}{\ln (x)-1}}$
(a) What indeterminate form is this?
(b) If $y=x^{\frac{1}{\ln (x)-1}}$, what is $\ln |y|$?
(c) Compute $\lim _{x \rightarrow 0^{+}} \ln |y|$.
(d) Compute $\lim _{x \rightarrow 0^{+}} x^{\frac{1}{\ln (x)-1}}$.

