Math 1232: Single-Variable Calculus 2 George Washington University Spring 2023 Recitation 3

Jay Daigle

February 2, 2024

Problem 1. (a) Compute sin(arctan(5)).

(b) Compute $\frac{d}{dx} \arccos(\sqrt{x})$ (c) Compute $\frac{d}{dx} \arctan(x + \sec(x))$

Problem 2. Compute the following integrals:

(a)
$$\int \frac{\arcsin(x)}{\sqrt{1-x^2}} dx.$$

(b)
$$\int_0^1 \frac{e^{2x}}{1+e^{4x}} dx.$$

(c)

Problem 3. (a) In class, we saw that $\lim_{x\to+\infty} \frac{\ln(x)}{x} = 0$. What is $\lim_{x\to+\infty} \frac{\ln(x^2)}{x}$?

- (b) Compute $\lim_{x \to +\infty} \frac{\ln(x^n)}{x}$ for n > 0.
- (c) Compute $\lim_{x\to+\infty} \frac{\ln(x)}{x^{\epsilon}}$ for $\varepsilon > 0$.
- (d) What do parts (a-c) tell you about the relationship between polynomials and $\ln(x)$?
- (a) In class we saw that $\lim_{x\to+\infty} \frac{e^x}{x} = +\infty$. Compute $\lim_{x\to+\infty} \frac{e^x}{x^2}$.
- (b) Compute $\lim_{x\to+\infty} \frac{e^x}{x^n}$ for n > 0.
- (c) What do parts (e-f) tell you about the relationship between e^x and polynomials?

Problem 4. (a) We want to compute $\lim_{x\to\pi/2} \sec(x) - \tan(x)$.

- (b) Can we use L'Hospital's Rule on this as written? Can we change it to a form where L'Hospital's Rule works?
- (c) What is the limit?

Problem 5. Let's compute $\lim_{x\to 0^+} x^{\frac{1}{\ln(x)-1}}$

- (a) What indeterminate form is this?
- (b) If $y = x^{\frac{1}{\ln(x)-1}}$, what is $\ln |y|$?
- (c) Compute $\lim_{x\to 0^+} \ln |y|$.
- (d) Compute $\lim_{x\to 0^+} x^{\frac{1}{\ln(x)-1}}$.