Math 1232: Single-Variable Calculus 2
 George Washington University Spring 2023 Recitation 3

Jay Daigle

February 2, 2024

Problem 1. (a) Compute $\sin (\arctan (5))$.
(b) Compute $\frac{d}{d x} \arccos (\sqrt{x})$
(c) Compute $\frac{d}{d x} \arctan (x+\sec (x))$

Solution:

(a) Our implicit triangle has side lengths of 5, 1, $\sqrt{26}$. So $\sin (\arctan (5))=\frac{5}{\sqrt{26}}$.
(b)

$$
\frac{d}{d x} \arccos (\sqrt{x})=\frac{-1}{\sqrt{1-x}} \cdot \frac{1}{2 \sqrt{x}}
$$

(c)

$$
\frac{d}{d x} \arctan (x+\sec (x))=\frac{1}{1+(x+\sec (x))^{2}} \cdot(1+\sec (x) \tan (x))
$$

Problem 2. Compute the following integrals:
(a) $\int \frac{\arcsin (x)}{\sqrt{1-x^{2}}} d x$.
(b) $\int_{0}^{1} \frac{e^{2 x}}{1+e^{4 x}} d x$.
(c)

Solution:

(a) Take $u=\arcsin (x)$, and $d u=\frac{d x}{\sqrt{1-x^{2}}}$. Then

$$
\int \frac{\arcsin (x)}{\sqrt{1-x^{2}}} d x=\int u d u=\frac{u^{2}}{2}+C=\frac{1}{2}(\arcsin (x))^{2}+C
$$

(b) Set $u=e^{2 x}$ so $d u=2 e^{2 x} d x . g(0)=1$ and $g(1)=e^{2}$. Then

$$
\int_{0}^{1} \frac{e^{2 x}}{1+e^{4 x}} d x=\int_{1}^{e^{2}} \frac{1}{2\left(1+u^{2}\right)} d u=\left.\frac{1}{2} \arctan (u)\right|_{1} ^{e^{2}}=\frac{1}{2}\left(\arctan \left(e^{2}\right)-\arctan (1)\right)
$$

Problem 3. (a) In class, we saw that $\lim _{x \rightarrow+\infty} \frac{\ln (x)}{x}=0$. What is $\lim _{x \rightarrow+\infty} \frac{\ln \left(x^{2}\right)}{x}$?
(b) Compute $\lim _{x \rightarrow+\infty} \frac{\ln \left(x^{n}\right)}{x}$ for $n>0$.
(c) Compute $\lim _{x \rightarrow+\infty} \frac{\ln (x)}{x^{\epsilon}}$ for $\varepsilon>0$.
(d) What do parts (a-c) tell you about the relationship between polynomials and $\ln (x)$?

Solution:

(a)

$$
\lim _{x \rightarrow+\infty} \frac{\ln \left(x^{2}\right)}{x}=\lim _{x \rightarrow+\infty} \frac{2 \ln (x)}{x}=2 \cdot 0=0
$$

since we know this limit from class.
Alternatively

$$
\lim _{x \rightarrow+\infty} \frac{\ln \left(x^{2}\right)^{\ngtr}}{x_{\searrow \infty}}={ }^{\mathrm{L}^{\prime} \mathrm{H}} \lim _{x \rightarrow+\infty} \frac{2 x / x^{2}}{1}=\lim _{x \rightarrow+\infty} \frac{2^{\nearrow^{2}}}{x_{\searrow \infty}}=0 .
$$

(b)

$$
\begin{gathered}
\lim _{x \rightarrow+\infty} \frac{\ln \left(x^{n}\right)}{x}=\lim _{x \rightarrow+\infty} \frac{n \ln (x)}{x}=n \cdot 0=0 \\
\lim _{x \rightarrow+\infty} \frac{\ln (x)^{\nearrow \infty}}{x^{\varepsilon} \searrow_{\searrow \infty}}={ }^{\mathrm{L}^{\prime} \mathrm{H}} \lim _{x \rightarrow+\infty} \frac{1 / x}{\varepsilon x^{\varepsilon-1}} \\
=\lim _{x \rightarrow+\infty} \frac{1^{\nearrow^{1}}}{\varepsilon x^{\varepsilon} \searrow_{\searrow \infty}}=0 .
\end{gathered}
$$

We see that $\ln (x)$ is much much smaller than any polynomial, when x is large. It doesn't matter how large a power we raise the inside of the logarithm to, or how small a power we raise the denominator to; in the limit, the logarithm will be infinitely smaller.
(a) In class we saw that $\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}=+\infty$. Compute $\lim _{x \rightarrow+\infty} \frac{e^{x}}{x^{2}}$.
(b) Compute $\lim _{x \rightarrow+\infty} \frac{e^{x}}{x^{n}}$ for $n>0$.
(c) What do parts (e-f) tell you about the relationship between e^{x} and polynomials?

Solution:

(a)

$$
\lim _{x \rightarrow+\infty} \frac{e^{x \nearrow^{\infty}}}{x^{2} \searrow{ }^{2}}={ }^{\mathrm{L} \mathrm{H}} \lim _{x \rightarrow+\infty} \frac{e^{x \nearrow^{\infty}}}{2 x_{\searrow \infty}}={ }^{\mathrm{L}{ }^{\prime} \mathrm{H}} \lim _{x \rightarrow \infty} \frac{e^{x \nearrow^{\infty}}}{2 \searrow_{\searrow 2}}=+\infty .
$$

(b) To work this out formally we'd need a "proof by induction", but we can see what's happening.

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{e^{x \nearrow^{\infty}}}{x^{n} \searrow \infty} & ={ }^{\mathrm{L}^{\prime} \mathrm{H}} \frac{e^{x \nearrow^{\infty}}}{n x^{n-1} \searrow_{\infty}} \\
& ={ }^{\mathrm{L}^{\prime} \mathrm{H}} \frac{e^{x \nearrow^{\infty}}}{n(n-1) x^{n-2} \searrow_{\searrow \infty}} \\
& \vdots \\
& ={ }^{\mathrm{L} \mathrm{~L}^{\prime} \mathrm{H}} \frac{e^{x \nearrow^{\infty}}}{n(n-1)(n-2) \ldots(3)(2) x_{\searrow \infty}} \\
& ={ }^{\mathrm{L} \prime \mathrm{H}} \frac{e^{x \nearrow^{\infty}}}{n(n-1)(n-2) \ldots(3)(2)_{\searrow_{n(n-1) \ldots(3)(2)}}}=+\infty .
\end{aligned}
$$

(c) This is the converse of the logarithm. e^{x} is much bigger than x^{n} for any positive n, when x is large; so e^{x} is asymptotically bigger than any polynomial.

Problem 4. (a) We want to compute $\lim _{x \rightarrow \pi / 2} \sec (x)-\tan (x)$.
(b) Can we use L'Hospital's Rule on this as written? Can we change it to a form where L'Hospital's Rule works?
(c) What is the limit?

Solution:

(a) This is a $\infty-\infty$ limit.
(b) We can't use L'Hospital's Rule because this isn't a fraction. But we can write

$$
\lim _{x \rightarrow \pi / 2} \sec (x)-\tan (x)=\lim _{x \rightarrow \pi / 2}\left(\frac{1}{\cos (x)}-\frac{\sin (x)}{\cos (x)}\right)
$$

(c)

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 2} \sec (x)-\tan (x) & =\lim _{x \rightarrow \pi / 2}\left(\frac{1}{\cos (x)}-\frac{\sin (x)}{\cos (x)}\right) \\
& =\lim _{x \rightarrow \pi / 2} \frac{1-\sin (x)^{\nearrow^{0}}}{\cos (x)_{\searrow 0}} \\
& ={ }^{\mathrm{L}} \mathrm{H} \lim _{x \rightarrow \pi / 2} \frac{-\cos (x)^{\nearrow^{0}}}{-\sin (x)_{\searrow 1}}=\frac{0}{1}=0 .
\end{aligned}
$$

Problem 5. Let's compute $\lim _{x \rightarrow 0^{+}} x^{\frac{1}{\ln (x)-1}}$
(a) What indeterminate form is this?
(b) If $y=x^{\frac{1}{\ln (x)-1}}$, what is $\ln |y|$?
(c) Compute $\lim _{x \rightarrow 0^{+}} \ln |y|$.
(d) Compute $\lim _{x \rightarrow 0^{+}} x^{\frac{1}{\ln (x)-1}}$.

Solution:

(a) This is 0^{0}.
(b) $\ln (y)=\frac{1}{\ln (x)-1} \ln (x)$.
(c)

$$
\lim _{x \rightarrow 0^{+}} \ln (y)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)^{\nearrow^{\infty}}}{\ln (x)-1_{\searrow \infty}}=^{\mathrm{L}^{\prime} \mathrm{H}} \lim _{x \rightarrow 0^{+}} \frac{1 / x}{1 / x}=1
$$

(d) $\lim _{x \rightarrow 0^{+}} y=e^{1}=e$.

