Math 1232: Single-Variable Calculus 2
 George Washington University Spring 2023 Recitation 4

Jay Daigle

February 9, 2024

Problem 1. (a) We want to compute $\int x^{2} e^{-3 x} d x$. Why do we want to use integration by parts? What should be our u and $d v$, and why?
(b) Compute the integral.
(c) Now we want to compute $\int \cos (3 x) e^{2 x} d x$. Why do we want to use integration by parts? What should be our u and $d v$, and why? When we need to make another choice, what forces us to make that choice?
(d) Compute the integral.

Problem 2. Compute $\int \arctan (x) d x$.
Problem 3. Compute $\int \sin ^{6}(x) d x$.
Problem 4. Compute $\int \sec ^{6}(x) \tan ^{5}(x) d x$ with two different approaches. Do you get the same answer either way?

Problem 5 (Bonus). Do one of the following two integrals. Explain why you don't want to do the other one.
(a) $\int \tan ^{2}(x) \sec ^{3}(x) d x$
(b) $\int \tan ^{3}(x) \sec ^{3}(x) d x$.

Problem 6. Consider the integral $\int \frac{d x}{\sqrt{4 x^{2}-1}}$.
(a) Which trig function would let us simplify that square root, and what identity are we using?
(b) What trigonometric substitution should we use here?
(c) Compute the antiderivative.
(d) Make sure to substitute your x back into the equation!

