Math 1232: Single-Variable Calculus 2 George Washington University Spring 2023 Recitation 6

Jay Daigle

February 23, 2023

Problem 1. We want to compute $\int_0^2 \frac{1}{\sqrt[3]{x-1}} dx$.

- (a) Can you compute an antiderivative? Can you evaluate it at 0 and 2?
- (b) Did part (a) finish the problem? Sketch a picture of the graph. What should we be concerned about?
- (c) Carefully set up a computation that will find $\int_0^2 \frac{1}{\sqrt[3]{x-1}} dx$. (Hint: It should have two limit operations in it.)
- (d) What did we learn from this that we didn't learn from (a)?

Problem 2. We want to figure out if $\int_0^{+\infty} e^{-x^2} dx$ converges—that is, if it's finite or infinite.

- (a) If we can find an antiderivative, we can just compute the improper integral directly. Why doesn't that work?
- (b) Since we can't integrate this directly we might want to use a comparison test. We need to find an easy-to-integrate function that's larger than e^{-x^2} . Find a function f(x) that makes $f(x)e^{-x^2}$ easy to integrate.
- (c) If $f(x) \ge 1$, then we can just integrate $f(x)e^{-x^2}$. Is it?
- (d) This is where we can pull in a trick. Is there some a where f(x) > 1 when x > a? (You may need to adjust your f(x) here, especially the sign. It's fine as long as you can still integrate it.)

- (e) We know $\int_{a}^{+\infty} e^{-x^2} dx \leq \int_{a}^{+\infty} f(x) e^{-x^2} dx$. Compute the new improper integral; is it finite?
- (f) Now we just have to deal with $\int_0^a e^{-x^2} dx$. We can't do that integral exactly, but that's fine: you should be able to tell whether it's finite or not without doing any calculations. How?
- (g) Does $\int_0^{+\infty} e^{-x^2} dx$ converge?

Problem 3. Let $f(x) = x^2$. Let's find the arc length between x = 0 and x = 4.

- (a) This makes a very reasonable shape. What does the graph look like?
- (b) Set up an integral to compute this arc length. You need to think about the variable of integration, the bounds, and the actual function to integrate.
- (c) What techniques should we use to compute this integral? Where do we get stuck?
- (d) Is there another way we could have set it up?
- (e) Is that integral any easier?

Problem 4. Let $f(x) = \sqrt[3]{3x}$. Take the portion of the graph where $0 \le y \le 2$ and rotate it around the y axis.

- (a) Try to sketch a picture of what this will look like.
- (b) Set up an integral to find the surface area. Again, think about the variable of integration, the bounds, and the function. Do you have multiple choices here or just one?
- (c) Can you compute that integral?