Math 1232: Single-Variable Calculus 2 George Washington University Spring 2024 Recitation 8

Jay Daigle

March 8, 2023

Problem 1. Let $(a_n) = \left(-6, 4, \frac{-8}{3}, \frac{16}{9}, \frac{-32}{27}, \dots\right)$.

- (a) Find a closed-form formula for a_n .
- (b) Is there a real function f so that $f(n) = a_n$?
- (c) What is $\lim_{n\to\infty} a_n$? Why?

Problem 2 (Factorials). (a) What is 4!? What is $\frac{4!}{3!}$?

- (b) What is $\frac{5!}{4!}$? What is $\frac{5!}{3!}$?
- (c) Can you figure out what $\frac{202!}{200!}$ is?

Problem 3. (a) Compute $\lim_{n \to \infty} \frac{n}{n!}$. Justify your answer.

- (b) Compute $\lim_{n\to\infty} \frac{e^n}{n!}$.
- (c) Now compute $\lim_{n\to\infty} \frac{n^k}{n!}$, where k > 0 is an integer.

Problem 4. Consider the sequence $(a_n) = (\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2}\sqrt{2}}, \dots).$

(a) We don't have a closed-form formula for this sequence, but we can still say things about it. What happens if we square each element of the sequence, and then divide by 2?

- (b) We want to find the limit of this sequence. Half of this is easy: *if* the sequence converges, we can use a trick to find the limit. Suppose lim_{n→∞} a_n = L. What can you say about Lⁿ/2?
- (c) Can you figure out what L is, if the limit exists?
- (d) That all relied on the idea that the limit existed. We want to use completeness to prove this. We need to show this sequence is increasing and bounded above.
 - If $0 \le x \le 2$, explain why $x \le \sqrt{2x}$.
- (e) If $0 \le x \le 2$, explain why $\sqrt{2x} \le 2$.
- (f) How does this prove the limit exists?

Problem 5. The discrete equivalent of a derivative is a *difference quotient*. Given a function f(n) defined on positive integers, we can define $\Delta f(n) = f(n+1) - f(n)$.

- (a) Does that look like a derivative? What pieces are missing, and why?
- (b) If $f(n) = n^2$, compute $\Delta f(n)$. Compute f'(n). How are they related?
- (c) If $g(n) = \frac{1}{n}$, compute $\Delta g(n)$. Compute g'(n). How are they related?