Evaluating Voting Methods II

Jay Daigle

jaydaigle@gwu.edu

https://jaydaigle.net/politics

The George Washington University

September 17, 2025

Summary

Voting Methods

Plurality

- Hare's method
- Coombs's Method

dictatorship

monarchy

all ties

- Copeland's Method
- Borda count
- Antiplurality

Voting Method Criteria

- unanimous
- decisive

majoritarian

- anonymous
- neutral

monotone

Pareto

- independent
- Condorcet
- anti-Condorcet

Previous Results

Proposition

The plurality method is majoritarian, monotone, and Pareto, but not Condorcet, anti-Condorcet, or independent.

Proposition

The antiplurality method is monotone, but not majoritarian, Condorcet, anti-Condorcet, Pareto, or independent.

Proposition '

Hare's method is majoritarian and Pareto, but not monotone, Condorcet, anti-Condorcet, or independent.

Definition

Eliminate the candidate(s) with the most last-place votes. Repeat.

The last remaining candidate(s) are the winner(s).

Discussion Question

What criteria will Coombs's method satisfy?

Claim

Coomb's method is Pareto.

- Assume A is ahead of B on every preference list.
- A will have no last-place votes while B is in the race.
- B will get eliminated before A does
- B can't win.

Claim

Coomb's method is not Condorcet or majoritarian.

Proof.

Consider:

С	С	В	В	В
Α	А	С	А	А
В	В	Α	С	С

- What happens?
 - Eliminate B and C; A wins.
- B is the majority candidate and loses.
- B is also the Condorcet candidate.

Claim

Coomb's method is not anti-Condorcet.

Wrong Argument that it is anti-Condorcet

- An anti-Condorcet candidate will lose any head-to-head
- If they make it to the last round, they'll lose that last head-to-head matchup
- An anti-Condorcet candidate can't win.

Discussion Question

What's wrong with this argument?

Claim

Coomb's method is not anti-Condorcet.

Proof.

Consider (again):

С	С	В	В	В
Α	Α	С	Α	А
В	В	Α	C	С

- What happens?
 - Eliminate B and C; A wins.
- A is anti-Condorcet but wins
- A would lose either head-to-head, but B and C are eliminated simultaneously.

Exercise

Coomb's method is not monotone or independent.

Proof.

- Try to do this on your own.
- Use the proofs for Hare's method for inspiration.

Proposition

Coombs's method is Pareto, but not majoritarian, monotone, Condorcet, anti-Condorcet, or independent.

Definition

If there are n candidates, give n-1 points for a first-place vote, n-2 for a second-place vote, down to 0 for a last-place vote. The candidate(s) with the most votes win.

Discussion Question

What criteria will the Borda Count satisfy?

Claim

The Borda count is monotone.

- Raising a candidate on preference lists can't reduce their score
- Raising a candidate on preference lists can't raise anyone else's score
- A winner will still win after rising on some lists.

Claim

The Borda count is Pareto.

- If every voter prefers A to B, each voter will give A more points than B.
- A will get a higher score than B, so B can't win.

Claim

The Borda count is not Condorcet or majoritarian.

Proof.

Consider:

Α	А	Α	В	В
В	В	В	С	С
С	С	С	Α	Α

- What happens?
 - A gets 6 points
 - B gets 7 points
 - C gets 2 points
 - B wins
- A is the Condorcet candidate.
- A is the majority candidate.

Claim

The Borda count is not independent.

С	Α	Α	В	В		С	Α	А	В	В
Α	В	В	Α	Α	\rightarrow	Α	В	В	С	С
В	С	С	С	С		В	С	С	Α	Α

- Profile 1: A gets 7, B gets 6, C gets 2. A wins
- Profile 2: A gets 5, B gets 6, C gets 4. B wins
- Only changed relative positions of A and C.

Claim

The Borda count is anti-Condorcet.

- First time we've proven something is anti-Condorcet
- New type of argument
- Can't just give an example
- Kind of complicated!

Claim

The Borda count is anti-Condorcet.

- Suppose *n* candidates and *m* voters
- Each voter gives $\frac{n(n-1)}{2}$ total votes
- Total number of points: $m \cdot \frac{n(n-1)}{2}$.
- Average number of points per candidate is

$$\frac{mn(n-1)}{2n}=\frac{m(n-1)}{2}.$$

Claim

The Borda count is anti-Condorcet.

- Average score: $\frac{m(n-1)}{2} = \frac{1}{2}m(n-1)$
- Some candidate will be at least average
- Max score: m(n-1)
- Average score is half of max score
- Want to show an anti-Condorcet candidate gets less than that.

Claim

Let A be an anti-Condorcet candidate. Then A's Borda count will be less than half the maximum possible.

- New perspective: get one Borda point each time one voter ranks you ahead of one other candidate.
- A gets ranked below each other candidate more than half the time
- A gets less than half the possible points
- A gets less than $\frac{1}{2}m(n-1)$ total points.

Claim

The Borda count is anti-Condorcet.

- Let A be an anti-Condorcet candidate.
- Then A gets less than $\frac{1}{2}m(n-1)$ total points.
- But the average score is $\frac{1}{2}m(n-1)$ points.
- At least one candidate will do average or better, so some candidate gets more points than A.
- If A is anti-Condorcet then A cannot win in the Borda count.

Proposition

The Borda count method is monotone, anti-Condorcet, and Pareto, but not majoritarian, Condorcet, or independent.

Definition

Each candidate earns one point for every candidate they beat in a head-to-head matchup (using a simple majority method). A candidate earns half a point for every candidate they tie. The candidate(s) with the most points at the end win.

Discussion Question

What criteria will Copeland's method satisfy?

Claim

Copeland's method is Condorcet, majoritarian, and anti-Condorcet.

- A Condorcet candidate wins each head-to-head and gets a perfect score
- No one else can get a perfect score, so the Condorcet candidate is the unique winner
- This means a majority candidate is also the unique winner
- An anti-Condorcet candidate loses each matchup
- Gets zero points and can't win

Claim

Copeland's method is Pareto.

- Suppose A is above B on every preference list
- Then A wins every matchup B wins
- A gets a point whenever B gets a point
- A gets at least half a point whenever B gets half a point
- A beats B, so gets a point B doesn't get
- A scores more than B, so B can't win.

Claim

Copeland's method is monotone.

Proof.

- Moving A up on some lists won't hurt them in any head-to-head, so won't reduce A's score
- Won't affect any other head-to-head at all
- So it can't increase any other candidate's score
- If A wins before the switch, will also win after.

Discussion Question

How does this suggest we look at independence?