Math 1231: Single-Variable Calculus 1 George Washington University Fall 2025 Recitation 3

Jay Daigle

Friday September 12, 2025

Problem 1. Let $h(x) = \frac{x-1}{\sqrt{5-x}-2}$.

- (a) Is this function continuous where it's defined? Where is it undefined?
- (b) We can factor an x-1 out of the top, but we can't obviously factor one out of the bottom. We need to use an algebraic trick make the x-1 appear. What tricks do we have that might work?
- (c) What is $\lim_{x\to 1} h(x)$?

Solution:

- (a) The function is reasonable, so it's continuous where defined. IT's undefined at x = 1 and also at x > 5.
- (b) Here we need to multiply by the conjugate. We can compute

$$\frac{x-1}{\sqrt{5-x}-2} = \frac{x-1}{\sqrt{5-x}-2} \frac{\sqrt{5-x}+2}{\sqrt{5-x}+2}$$
$$= \frac{(x-1)(\sqrt{5-x}+2)}{(5-x)-4}$$
$$= \frac{(x-1)(\sqrt{5-x}+2)}{-(x-1)}.$$

This function is not the same as $-\sqrt{5-x}-2$, but it's very close.

(c)

$$\lim_{x \to 1} \frac{x-1}{\sqrt{5-x}-2} = \lim_{x \to 1} \frac{x-1}{\sqrt{5-x}-2} \frac{\sqrt{5-x}+2}{\sqrt{5-x}+2}$$

$$= \lim_{x \to 1} \frac{(x-1)(\sqrt{5-x}+2)}{(5-x)-4}$$

$$= \lim_{x \to 1} \frac{(x-1)(\sqrt{5-x}+2)}{-(x-1)}$$

$$= \lim_{x \to 1} -(\sqrt{5-x}+2) = -4.$$

Problem 2. We want to compute $\lim_{x\to 3} \frac{\sin(x^2-9)}{x-3}$.

- (a) What rule do we know we need to invoke here?
- (b) What θ are we going to need to pick for this to work out, and why?
- (c) Do algebra so that you can invoke the small angle approximation. What is the limit? (Are you using the AIF property?)
- (d) Go back to the beginning, and see what our heuristic idea that $\sin(\theta) \approx \theta$ would have told you. Does that match with what you got?

Solution:

- (a) We need to use the small angle approximation, because this problem requires us to make trig interact with algebra.
- (b) We basically have to take $\theta = x^2 9$, because that's what's inside the sin.
- (c) We need to get a θ on the bottom as well. So we take

$$\lim_{x \to 3} \frac{\sin(x^2 - 9)}{x - 3} = \lim_{x \to 3} \frac{\sin(x^2 - 9)}{x - 3} \cdot \frac{x + 3}{x + 3} = \lim_{x \to 3} \frac{\sin(x^2 - 9)(x + 3)}{x^2 - 9}$$
$$= \lim_{x \to 3} \frac{\sin(x^2 - 9)}{x^2 - 9} \cdot \lim_{x \to 3} x + 3 = 1 \cdot (3 + 3) = 6.$$

You have to use AIF in that first equality, because you're making the function undefined at -3.

There are a couple different ways to make this algebra work out. You might also try

$$\lim_{x \to 3} \frac{\sin(x^2 - 9)}{x - 3} =^{AIF} \lim_{x \to 3} \frac{\sin(x^2 - 9)/x^2 - 9 \cdot x^2 - 9}{x - 3}$$
$$= \lim_{x \to 3} \frac{x^2 - 9}{x - 3} =^{AIF} \lim_{x \to 3} x + 3 = 6,$$

which is essentially the same logic.

(d)

We have a $\sin(0)$ on the top and a 0 on the bottom, but the 0s don't come from the same form; we need to get a $x^2 - 9$ term on the bottom. Multiplication by the conjugate gives

$$\lim_{x \to 3} \frac{\sin(x^2 - 9)}{x - 3} = \lim_{x \to 3} \frac{\sin(x^2 - 9)}{x - 3} \cdot \frac{x + 3}{x + 3} = \lim_{x \to 3} \frac{\sin(x^2 - 9)(x + 3)}{x^2 - 9}$$
$$= \lim_{x \to 3} \frac{\sin(x^2 - 9)}{x^2 - 9} \cdot \lim_{x \to 3} x + 3 = 1 \cdot (3 + 3) = 6.$$

Problem 3. We want to think about the ways that infinity doesn't really work like a number, and we can't do arithmetic with it.

- (a) To start: what is $\lim_{x\to 0} 1/x$, and why?
- (b) Let's look at $\lim_{x\to 0} 1/x + 1/x$. If we computed the limit of each fraction individually, what indeterminate form would we get?
- (c) How do we actually compute $\lim_{x\to 0} \frac{1}{x} + \frac{1}{x}$? (Hint: combine them into one fraction.) Does this make sense in light of what you got in part (b)?
- (d) Now consider $\lim_{x\to 0} \frac{1}{x} + \frac{x-1}{x-x^2}$. What is the limit of each piece, and what indeterminate form is this?
- (e) Compute $\lim_{x\to 0} \frac{1}{x} + \frac{x-1}{x-x^2}$ directly. Does this make sense in light of what you got in part (d)?
- (f) Now consider $\lim_{x\to 0} 1/x + 1/x^2$. What indeterminate form would this represent? What is the limit? Do those make sense together?
- (g) Finally, let's look at $\lim_{x\to 0} \frac{1}{x} + \frac{x^2 3x + 2}{x^2 2x}$. What indeterminate form is this? What is the limit?
- (h) What pattern do you see from all of these?

Solution:

- (a) $\lim_{x\to 0} \frac{1^{x^{-1}}}{x_{\searrow 0}} = \pm \infty$.
- (b) This looks like $\infty + \infty$ as an indeterminate form.
- (c) We see $\lim_{x\to 0} \frac{1}{x} + \frac{1}{x} = \lim_{x\to 0} \frac{2^{x^2}}{x_{\searrow 0}} = \pm \infty$. This seems to make sense; $\infty + \infty = \infty$ is perfectly reasonable.

(d) We already know $\lim_{x\to 0} \frac{1}{x} = \pm \infty$. We can compute that

$$\lim_{x \to 0} \frac{x - 1^{-1}}{x - x^2} = \pm \infty.$$

So this is again $\infty + \infty$.

(e) By combining fractions, we get

$$\lim_{x \to 0} \frac{1}{x} + \frac{x - 1}{x - x^2} = \lim_{x \to 0} \frac{1 - x}{x - x^2} + \frac{x - 1}{x - x^2} = \lim_{x \to 0} 0 = 0.$$

So here $\infty + \infty = 0$.

(f) We have a $\pm \infty$ plus a $+\infty$, so we get $\infty + \infty$ again. When we combine them into one term we get

$$\lim_{x \to 0} \frac{1}{x} + \frac{1}{x^2} = \lim_{x \to 0} \frac{x + 1^{x^1}}{x^2} = +\infty$$

since the denominator is $x^2 \ge 0$. So here $\infty + \infty = +\infty$.

We could heuristically say that $\frac{1}{x^2}$ goes to $+\infty$ "faster" than $\frac{1}{x}$ goes to $\pm\infty$, and so it wins out; but this is really vague and handwavy so we try to replace it with more precise arguments like this one.

(g) We compute $\lim_{x\to 0} \frac{x-3x+2^{-2}}{x^2-2x_{>0}} = \pm \infty$, so this is, again, $\infty + \infty$. The actual limit is

$$\lim_{x\to 0}\frac{1}{x}+\frac{x^2-3x+2}{x^2-2x}=\lim_{x\to 0}\frac{x-2+x^2-3x+2}{x^2-2x}=\lim_{x\to 0}\frac{x^2-2x}{x^2-2x}=\lim_{x\to 0}1=1.$$

So here $\infty + \infty = 1$.

(h) In conclusion, if you know something looks like $\infty + \infty$, you don't really know anything about it at all.