Math 1231: Single-Variable Calculus 1 George Washington University Fall 2025 Recitation 3

Jay Daigle

September 9, 2025

We want to practice the way we actually compute limits. Remember we have two key principles:

- (a) Functions built out of algebra and trigonometry are *continuous* wherever they're defined. When a function is continuous, we can compute the limit by just plugging in.
- (b) We say two functions are *almost identical* if they're the same except at a small collection of points. If two functions are almost identical, then their limits will always be the same. This allows us to replace complicated functions with simpler ones.

Problem 1 (Warmup). Let $f(x) = \frac{x^2 + \sin(x) + 3}{x^2 - x - 2}$.

- (a) Where is f continuous? Where is it discontinuous?
- (b) What is $\lim_{x\to 0} f(x)$?

Problem 2. Let $f(x) = \frac{x-1}{x^2-1}$.

- (a) What is f(2)? Is f continuous at 2?
- (b) What is $\lim_{x\to 2} f(x)$?
- (c) What is f(1)? Is f continuous at 1?
- (d) What function can we find that's almost the same as f, but defined and continuous at 1? (Is this function the same as f?)

(e) What is $\lim_{x\to 1} f(x)$?

Problem 3. Let $g(x) = \frac{(x+1)^2 - 1}{x+2}$.

- (a) Is q continuous where it's defined? Where is it undefined?
- (b) Can you find a function that's almost identical to g but continuous everywhere?
- (c) What is $\lim_{x\to -2} g(x)$?

Problem 4. Let $h(x) = \frac{x-1}{\sqrt{5-x}-2}$.

- (a) Is this function continuous where it's defined? Where is it undefined?
- (b) We can factor an x-1 out of the top, but we can't obviously factor one out of the bottom. We need to use an algebraic trick make the x-1 appear. What tricks do we have that might work?
- (c) What is $\lim_{X\to 1} h(x)$?

Problem 5. We want to compute $\lim_{x\to 3} \frac{\sin(x^2-9)}{x-3}$.

- (a) What rule do we know we need to invoke here?
- (b) What θ are we going to need to pick for this to work out, and why?
- (c) Do algebra so that you can invoke the small angle approximation. What is the limit? (Are you using the AIF property?)
- (d) Go back to the beginning, and see what our heuristic idea that $\sin(\theta) \approx \theta$ would have told you. Does that match with what you got?