Math 1231: Single-Variable Calculus 1 George Washington University Fall 2025 Recitation 5

Jay Daigle

September 23, 2005

Problem 1. Let $g(x) = \frac{1}{x+3}$.

- (a) Write down a limit expression to compute g'(2). Be careful with order of operations and parentheses!
- (b) Now compute g'(2).
- (c) Write a limit expression to compute g'(x). Again, make sure you get your order of operations right.
- (d) Compute g'(x).

Solution:

(a) We have

$$g'(2) = \lim_{h \to 0} \frac{g(2+h) - g(2)}{h}$$
$$= \lim_{h \to 0} \frac{\frac{1}{5+h} - \frac{1}{5}}{h}.$$

Make sure you have $\frac{1}{5+h}$, and not $\frac{1}{5}+h!$ The second thing is very different and will not give you a useful answer.

(b) We have

$$g'(2) = \lim_{h \to 0} \frac{\frac{1}{5+h} - \frac{1}{5}}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{5+h} - \frac{1}{5} \right) = \lim_{h \to 0} \frac{1}{h} \left(\frac{5 - (5+h)}{5(5+h)} \right)$$

$$= \lim_{h \to 0} \frac{-h}{5h(5+h)} = \lim_{h \to 0} \frac{-1}{5(5+h)}$$

$$= \frac{-1}{5(5+0)} = \frac{-1}{25}.$$

(c)

$$g'(x) = \lim_{h \to 0} \frac{\frac{1}{x+h+3} - \frac{1}{x+3}}{h}.$$

Again, we want to make sure that we don't write $\frac{1}{x+3} + h$ or something like that.

(d)

$$g'(x) = \lim_{h \to 0} \frac{\frac{1}{x+h+3} - \frac{1}{x+3}}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{x+h+3} - \frac{1}{x+3} \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{(x+3) - (x+h+3)}{(x+h+3)(x+3)} \right)$$

$$= \lim_{h \to 0} \frac{-h}{h(x+h+3)(x+3)} = \lim_{h \to 0} \frac{-1}{(x+h+3)(x+3)}$$

$$= \frac{-1}{(x+3)^2}.$$

Problem 2. Let a(x) = |x| be the absolute value function.

- (a) Write down a formula for a as a piecewise function.
- (b) Write down a limit expression for the derivative of a at 0.
- (c) What is the limit from the right?
- (d) What is the limit from the left?
- (e) What does that tell you about the derivative?

Solution:

(a)
$$a(x) = \begin{cases} x & x \ge 0 \\ -x & x \le 0. \end{cases}$$

(b)
$$a'(0) = \lim_{h \to 0} \frac{|h| - |0|}{h} = \lim_{h \to 0} \frac{|h|}{h}.$$

(c)
$$\lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1.$$

(d)
$$\lim_{h \to 0^-} \frac{|h|}{h} = \lim_{h \to 0^-} \frac{-h}{h} = \lim_{h \to 0^-} -1 = -1.$$

(e) The limits to the right and the left don't exist, so the limit doesn't exist.

Problem 3. Let $g(x) = \sqrt[3]{x}$.

- (a) Write down a limit formula to compute the derivative of g at 0.
- (b) What is g'(0)? What does this tell you?
- (c) Now write down a limit formula to compute the derivative of $p(x) = \sqrt[3]{x^2}$.
- (d) What is this limit? What does that tell you?
- (e) Write down a limit formula to compute the derivative of g at a when $a \neq 0$.
- (f) (Bonus) Can you compute this limit? What do you have to do here? (It's not obvious, but there's an algebraic trick we've mentioned that can help us.)

Solution:

$$g'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{\sqrt[3]{h} - 0}{h}$$
$$= \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0} \frac{\sqrt[3]{x} - 0}{x - 0}.$$

(b)
$$g'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{\sqrt[3]{h}}{h} = \lim_{h \to 0} \frac{1}{\sqrt[3]{h^2}} = +\infty.$$

This is a vertical tangent line, because the limit is always $+\infty$.

(c)

$$p'(0) = \lim_{h \to 0} \frac{p(h) - p(0)}{h} = \lim_{h \to 0} \frac{\sqrt[3]{h^2 - 0}}{h}$$
$$= \lim_{x \to 0} \frac{p(x) - p(0)}{x - 0} = \lim_{x \to 0} \frac{\sqrt[3]{x^2 - 0}}{x - 0}.$$

(d)
$$p'(0) = \lim_{h \to 0} \frac{p(h) - p(0)}{h} = \lim_{h \to 0} \frac{\sqrt[3]{h^2}}{h} = \lim_{h \to 0} \frac{1}{\sqrt[3]{h}} = \pm \infty.$$

This is a *cusp*, because the limit is $\pm \infty$ rather than just $+\infty$.

(e)

$$g'(a) = \lim_{h \to 0} \frac{g(h) - g(a)}{h} = \lim_{h \to 0} \frac{\sqrt[3]{a + h} - \sqrt[3]{a}}{h}$$
$$= \lim_{x \to 0} \frac{g(x) - g(a)}{x - a} = \lim_{x \to 0} \frac{\sqrt[3]{x} - \sqrt[3]{a}}{x - a}.$$

(f) You might recognize this as being a difference of cube roots, so we can use the difference-of-cubes formula, as a sort of generalization of multiplication by the conjugate.

$$g'(a) = \lim_{h \to 0} \frac{\sqrt[3]{a+h} - \sqrt[3]{a}}{h}$$

$$= \lim_{h \to 0} \frac{(a+h) - a}{h(\sqrt[3]{(a+h)^2} + \sqrt[3]{(a+h)a} + \sqrt[3]{a^2})}$$

$$= \lim_{h \to 0} \frac{h}{h(\sqrt[3]{(a+h)^2} + \sqrt[3]{(a+h)a} + \sqrt[3]{a^2})}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt[3]{(a+h)^2} + \sqrt[3]{(a+h)a} + \sqrt[3]{a^2}}$$

$$= \frac{1}{\sqrt[3]{a^2} + \sqrt[3]{a^2} + \sqrt[3]{a^2}} = \frac{1}{3\sqrt[3]{a^2}}.$$

Problem 4. (a) Use the product rule to differentiate $(x^2 + 1)(3x^3 - 5)$.

- (b) Multiply out $(x^2 + 1)(3x^3 5)$ to get one big polynomial. Use our derivative rules to compute that derivative.
- (c) Which process was easier?

Solution:

(a)
$$2x(3x^3-5)+(x^2+1)(9x^2)$$
.

(b) We get

$$(x^{2} + 1)(3x^{3} - 5) = 3x^{5} - 5x^{2} + 3x^{3} - 5$$
$$\frac{d}{dx}(x^{2} + 1)(3x^{3} - 5) = \frac{d}{dx}3x^{5} - 5x^{2} + 3x^{3} - 5$$
$$= 15x^{4} - 10x + 9x^{2} - 0.$$

(c) This is a matter of personal taste, but I'd say the second derivative was easier, but took more work total when we count the work of multiplying the terms out.

Problem 5. Compute $\frac{d}{dx} \frac{x^5 - 7x}{4x^2 + 3}$.

Solution:

$$\frac{d}{dx}\frac{x^5 - 7x}{4x^2 + 3} = \frac{(5x^5 - 7)(4x^2 + 3) - (8x)(x^5 - 7x)}{(4x^2 + 3)^2}.$$

Problem 6. (a) Let $h(x) = \tan^2(x)$. Find functions f and g so that $h(x) = (f \circ g)(x)$.

- (b) Compute f'(x) and g'(x). Use that info to compute h'(x).
- (c) Now let $h(x) = \tan(x^2)$. Find functions f and g so that $h(x) = (f \circ g)(x)$.
- (d) Compute f'(x) and g'(x). Use that information to compute h'(x).

Solution:

- (a) We can take $f(x) = x^2$ and $g(x) = \tan(x)$.
- (b) f'(x) = 2x and $g'(x) = \sec^2(x)$, so

$$h'(x) = f'(g(x)) \cdot g'(x) = f'(\tan(x)) \cdot g'(x) = 2\tan(x) \cdot \sec^2(x).$$

- (c) Now we have $f(x) = \tan(x)$ and $g(x) = x^2$.
- (d) Now we have $f'(x) = \sec^2(x)$ and g'(x) = 2x, so

$$h'(x) = f'(g(x)) \cdot g'(x) = f'(x^2) \cdot g'(x) = \sec^2(x^2) \cdot 2x.$$