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Problem 1. Let g(z) = 5.

(a) Write down a limit expression to compute ¢’(2). Be careful with order of operations

and parentheses!
(b) Now compute ¢'(2).

(c) Write a limit expression to compute ¢'(z). Again, make sure you get your order of

operations right.

(d) Compute ¢'(x).

Solution:
(a) We have
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not give you a useful answer.

Make sure you have and not % + h! The second thing is very different and will
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(b) We have
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Again, we want to make sure that we don’t write x+r3 + h or something like that.
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Problem 2. Let a(z) = |z| be the absolute value function.
(a) Write down a formula for a as a piecewise function.
(b) Write down a limit expression for the derivative of a at 0.
(c) What is the limit from the right?
(d) What is the limit from the left?

(e) What does that tell you about the derivative?
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Solution:
(a)

—x x<0.

a(x):{ r x>0

Im — = lim — = lim 1 =1.
hg(r)l+ h hgg+ h hgtr)l+
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(e) The limits to the right and the left don’t exist, so the limit doesn’t exist.
Problem 3. Let g(z) = /x.

(a) Write down a limit formula to compute the derivative of g at 0.

(b) What is ¢’(0)? What does this tell you?

3
2.

(¢) Now write down a limit formula to compute the derivative of p(x) =
(d) What is this limit? What does that tell you?

(e) Write down a limit formula to compute the derivative of g at a when a # 0.

(f) (Bonus) Can you compute this limit? What do you have to do here? (It’s not obvious,

but there’s an algebraic trick we’ve mentioned that can help us.)

Solution:

(a)
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(b) -
ren e g(h) —g(0) h 1
g(0) = lim ====— = Jim == = Jim =7 = +oo.

This is a vertical tangent line, because the limit is always +oo.

(c)

40 = i 2L, V0
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This is a cusp, because the limit is +0o rather than just +oo.

(e)

d(a) = IISL% g(h) ;g(a) _ }lli_m \/ﬁ Va
i Sy, u_

(f) You might recognize this as being a difference of cube roots, so we can use the difference-

of-cubes formula, as a sort of generalization of multiplication by the conjugate.

YaET - g
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Problem 4. (a) Use the product rule to differentiate (2 + 1)(323 — 5).

g'(a) = lim

h—0

(b) Multiply out (2% + 1)(323 — 5) to get one big polynomial. Use our derivative rules to

compute that derivative.

(c) Which process was easier?
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Solution:
(a) 2z(32% —5) + (22 + 1)(922).
(b) We get

(22 4+ 1)(32% — 5) = 32° — 5a? + 323 — 5

d d
@(f +1)(32° - 5) = %3;55 —52° +32° — 5

= 152* — 10z + 922 — 0.

(c) This is a matter of personal taste, but I'd say the second derivative was easier, but

took more work total when we count the work of multiplying the terms out.

d x°— Tz
Probl 5. te — .
roblem Compute Ir i 3

Solution:

dr 4z +3 (4z2 + 3)2

dz’—Tr (5z° —T)(4x* + 3) — (8xz)(x° — 7x)‘

Problem 6. (a) Let h(z) = tan?(x). Find functions f and g so that h(z) = (f o g)(x).
(b) Compute f'(x) and ¢'(x). Use that info to compute h'(x).
(c) Now let h(z) = tan(2?). Find functions f and g so that h(z) = (f o g)(z).

(d) Compute f'(z) and ¢'(x). Use that information to compute h'(x).

Solution:
(a) We can take f(z) = 22 and g(z) = tan(z).
(b) f'(z) = 22 and ¢'(z) = sec?(z), so
W(x) = f(9(2)) - g'(x) = f'(tan(z)) - ¢'(x) = 2tan(x) - sec’(2).
(c) Now we have f(z) = tan(z) and g(z) = a?.

(d) Now we have f'(x) = sec*(x) and ¢'(z) = 2z, so
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