
Math 1232 Spring 2025
Single-Variable Calculus 2

Mastery Quiz 12
Due Thursday, April 17

This week’s mastery quiz has three topics. Everyone should submit M4 and S9. If you
have a 4/4 on M3, you don’t need to submit it.

Don’t worry if you make a minor error, but try to demonstrate your mastery of the
underlying material. Feel free to consult your notes, but please don’t discuss the actual
quiz questions with other students in the course.

Remember that you are trying to demonstrate that you understand the concepts involved.
For all these problems, justify your answers and explain how you reached them. Do not just
write “yes” or “no” or give a single number.

Please turn this quiz in class on Thursday. You may print this document out and write
on it, or you may submit your work on separate paper; in either case make sure your name
and recitation section are clearly on it. If you absolutely cannot turn it in in person, you
can submit it electronically but this should be a last resort.

Topics on This Quiz

• Major Topic 3: Series Convergence

• Major Topic 4: Taylor Series

• Secondary Topic 9: Applications of Taylor Series

Name:

Recitation Section:
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Name: Recitation Section:

M3: Series Convergence

(a) Analyze the convergence of the series
∞∑
n=1

(−1)n3n

5n + 1

Solution: We use the Ratio test. We have

lim
n→∞

∣∣∣∣ (−1)n+13n+1/5n+1 + 1

(−1)n3n/5n + 1

∣∣∣∣ = lim
n→∞

3n+1(5n + 1)

3n(5n+1 + 1)

= lim
n→∞

3
5n + 1

5n+1 + 1

= lim
n→∞

3
1 + 1/5n

5 + 1/5n
=

3

5
.

This limit is less than 1, so by the ratio test this converges absolutely.

(b) Analyze the convergence of the series
∞∑
n=1

(−2)n

n2n + 1

Solution: You might try the ratio test here, but it won’t actually help:

lim
n→∞

∣∣∣∣ (−2)n+1/(n+ 1)2n+1 + 1

(−2)n/n2n + 1

∣∣∣∣ = lim
n→∞

2(n2n + 1)

(n+ 1)2n+1 + 1
= lim

n→∞

n+ 1/2n+1

n+ 1 + 1/2n+1
= 1.

Instead, we observe that this is an alternating series with the terms tending to zero,
since

lim
n→∞

(−2)n

n2n + 1
= lim

n→∞

(−1)n

n+ 1/2n
= 0.

Thus it converges. However, if we look at the absolute value, we can compare it to the
series

∑
1
n
:

lim
n→∞

2n/n2n + 1

1/n
= lim

n→∞

n2n

n2n + 1
= 1

and since
∑

1
n
diverges, by the limit comparison test our absolute-value series also

diverges. Thus the original series converges conditionally.

(c)
∞∑
n=4

(−1)n

(n2)/5 + 3n
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Solution: This clearly converges by the alternating series test, since limn→∞
1

n2/5−3n
=

0, but does it absolutely converge? The ratio test won’t work; if we work it out we’ll
get a limit of 1. But we have

∞∑
n=4

∣∣∣∣ (−1)n

n2/5 + 3n

∣∣∣∣ = ∞∑
n=4

1

n2/5 + 3n
,

so we can use the Limit Comparison Test to 1
n2 . We compute

lim
n→∞

1
n2/5+3n

1
n2

= lim
n→∞

n2

n2/5 + 3n
= 1/5.

This is a nonzero real number, so since
∑∞

n=4
1
n2 converges, by the Limit Comparison

Test,
∑∞

n=4
1

n2/5+3n
converges. Thus our original series converges absolutely. (And thus

we don’t actually need to check for whether the alternating series test applies.)

M4: Taylor Series

(a) Using series we already know, write down a formula for the (infinite) Taylor series for
(1 + 3x)2/3, and then write down the degree-three polynomial explicitly.

Solution: We can take this from the binomial series. So we have

f(x) =
∞∑
n=0

(
2/3

n

)
(3x)n =

∞∑
n=0

(
2/3

n

)
(3)nxn

T3(x, 0) = 1 +
2/3

1
· 3x+

(2/3)(− 1/3)

2
· 32x2 +

(2/3)(− 1/3)(− 4/3)

6
· 33x3

= 1 + 2x− x2 +
4

3
x3.

(b) In class we computed a Taylor series for sin(x) centered at zero. Use the degree-seven
Taylor polynomial to approximate sin(3) ≈ T7(3, 0). (You don’t need to numerically
simplify this.)

Using the Taylor series remainder, find an upper bound for the error in this approxi-
mation.

Solution: We know that

sin(x) =
∞∑
n=1

(−1)n
x2n+1

(2n+ 1)!

T7(x, 0) = x− x3

3!
+

x5

5!
− x7

7!

T7(x, 3) = 3− 27

3!
+

35

5!
− 37

7!
= 3− 37

6
+

243

120
− 2187

5040

= 3− 9

2
+

81

40
− 243

560
=

51

560
≈ 0.091.
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We know that fn+1(x) = ± cos(x) or ± sin(x) so |fn+1(z)| ≤ 1, and thus

|Rn(x)| =
∣∣∣∣f (n+1)(z)

(n+ 1)!
xn+1

∣∣∣∣ ≤ xn+1

(n+ 1)!

|R7(x)| ≤
x7+1

(7 + 1)!

|R7(3)| ≤
38

8!
=

729

4480
≈ 0.16.

It would also be okay to observe that the eighth term is zero, so we could actually
compute

|Rn(x)| =
∣∣∣∣f (n+1)(z)

(n+ 1)!
xn+1

∣∣∣∣ ≤ xn+1

(n+ 1)!

|R8(x)| ≤
x8+1

(8 + 1)!

|R8(3)| ≤
39

9!
=

243

4480
≈ 0.054.

(c) Write a power series expression for x
2+x2 centered a 0. What is the radius of conver-

gence?

Solution: We know that

1

2− x
=

1

2

1

1− x/2
=

1

2

∞∑
n=0

(x/2)n

1

2 + x2
=

1

2

1

1− (−x2/2)
=

1

2

∞∑
n=0

(−x2/2)n =
∞∑
n=0

(−1)n

2n+1
x2n

x

2 + x2
=

∞∑
n=0

(−1)n

2n+1
x2n+1.

The radius of convergence is
√
2. We can figure that out by reasoning from the geo-

metric series: the radius of convergence for the geometric series is 1, so it converges for
−1 < x2/2 < 1 or −2 < x2 < 2 or −

√
2 < x <

√
2. Or we can use the ratio test:

lim
n→∞

∣∣∣∣x2n+3/2n+2

x2n+1/2n+1

∣∣∣∣ = lim
n→∞

|x|2

2

and thus it converges when x2/2 < 1.

S9: Applications of Taylor Series

(a) Use a Taylor series to compute lim
x→0

cos(x2)− 1 + x4/2

x8
=

4
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Solution:

lim
x→0

cos(x2)− 1 + x4/2

x8
= lim

x→0

(1− x4/2 + x8/4!− x12/6! + . . . )− 1 + x4/2

x8

= lim
x→0

x8/4!− x12/6! + . . .

x8

= lim
x→0

1

4!
− x4

6!
+ · · · = 1

24
.

(b) Using series, compute
∫ π

0
2x cos(x5) dx.

Solution:

cos(x) =
∞∑
n=0

(−1)n

(2n)!
x2n

cos(x5) =
∞∑
n=0

(−1)n

(2n)!
x10n

2x cos(x5) =
∞∑
n=0

2(−1)n

(2n)!
x10n+1

∫
2x cos(x5) dx =

∞∑
n=0

2(−1)n

(2n)!(10n+ 2)
x10n+2 + C∫ π

0

2x cos(x5) dx =
∞∑
n=0

2(−1)n

(2n)!(10n+ 2)
π10n+2

(c) Use a degree-five Taylor polynomial to estimate sin(.3).

Solution: We have

sin(x) ≈ x− x3/6 + x5/120

sin(.3) ≈ .3− .33/6 + .35/120 ≈ .29552.
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