Math 1232: Single-Variable Calculus 2 George Washington University Spring 2025 Recitation 9

Jay Daigle

March 19, 2025

Problem 1. Let $(a_n) = (-6, 4, \frac{-8}{3}, \frac{16}{9}, \frac{-32}{27}, \dots).$

- (a) Find a closed-form formula for a_n .
- (b) Is there a real function f so that $f(n) = a_n$?
- (c) What is $\lim_{n\to\infty} a_n$? Why?

Problem 2 (Factorials). (a) What is 4!? What is $\frac{4!}{3!}$?

- (b) What is $\frac{5!}{4!}$? What is $\frac{5!}{3!}$?
- (c) Can you figure out what $\frac{202!}{200!}$ is?

Problem 3. (a) Compute $\lim_{n\to\infty} \frac{n}{n!}$. Justify your answer.

- (b) Compute $\lim_{n\to\infty} \frac{e^n}{n!}$.
- (c) Now compute $\lim_{n\to\infty} \frac{n^k}{n!}$, where k>0 is a fixed integer.

Problem 4. Write out the first five terms of:

(a)
$$\sum_{k=1}^{\infty} \frac{(-2)^{k+1}}{3k}$$

(b)
$$\sum_{k=1}^{\infty} \frac{k+1}{k!}$$

(c)
$$\sum_{k=3}^{\infty} \frac{k+3}{k^2-k-2}$$

Problem 5. Write in series/summation notation:

(a)
$$1 + \frac{2}{3} + \frac{3}{5} + \frac{4}{7} + \dots$$

(b)
$$1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \frac{1}{25} + \dots$$

(c)
$$2+7+14+23+34+\dots$$

Problem 6. (a) Use a telescoping series argument to write down a formula for $\sum_{k=1}^{n} \frac{1}{k^2+3k+2}$.

- (b) Compute $\sum_{k=1}^{\infty} \frac{1}{k^2+3k+2}$.
- (c) Use a telescoping series argument to write down a formula for $\sum_{k=1}^{n} \frac{2}{k^2+2k}$.
- (d) Compute $\sum_{k=1}^{\infty} \frac{2}{k^2+2k}$.
- (e) Use a telescoping series argument to write down a formula for $\sum_{k=1}^{n} \ln \left(\frac{k+1}{k+3} \right)$.
- (f) Compute $\sum_{k=1}^{\infty} \ln \left(\frac{k+1}{k+3} \right)$.

Problem 7 (Geometric Series). Compute:

(a)
$$\sum_{k=1}^{\infty} \frac{2^k}{3^k}$$

(b)
$$\sum_{k=2}^{\infty} \frac{(-5)^{k+2}}{2^{3k}}$$

(c)
$$\frac{5}{2} + \frac{5}{4} + \frac{5}{8} + \frac{5}{16} + \dots$$

(d)
$$\frac{-2}{3} + \frac{8}{9} + \frac{-32}{27} + \dots$$

(e)
$$\frac{1}{3} - \frac{1}{9} + \frac{1}{27} - \frac{1}{81} + \dots$$