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2 Apportionment

Article I, Section 2 of the Constitution says that the representatives should be

apportioned to the states “according to their respective numbers”. Unfortu-

nately, the Constitution does not offer any further guidance about precisely how

this should be done, and every 10 years Congress is left to implement an appor-

tionment that meets the spirit of these words. It is not hard to determine each

state’s “fair share” of the House of Representatives. . . . The difficulty is that this

fair share need not be a whole number, and yet the number of representatives

assigned to each state must be a whole number. So some process is needed to

round these fair shares to whole numbers. This is the apportionment problem.

What process should we use?

At first, there does not seem to be much substance to this question. Can’t we

simply choose the whole number that is nearest to the state’s fair share? It is

only upon some reflection that one realizes that the problem is more subtle than

this. Rounding the fair shares of all states to their nearest whole number may

result in assigning too few or too many seats all told. What should we do? It

turns out that Alexander Hamilton and Thomas Jefferson began a debate on this

topic in 1792. There are a number of sensible approaches to the problem, but

each has its flaws.

2.1 Congressional Apportionment and Hamilton’s Method

Suppose we have three states, and are going to allocate 100 Congressional seats to them.

The states have the populations

• A: 4,400,000

• B: 45,300,000

• C: 50,300,000

How many seats should each state get?

The total population is 100,000,000, so it seems like each state should get 1 seat per

million people. We would give A 4.4 seats, B 45.3 seats, and C 50.3 seats. But we can’t

actually allocate fractions of a representative; every state needs a whole number of seats. It

seems like A should get 4 seats, B should get 45 seats, and C should get 50 seats, with one

seat left over. The question is: who should get it?
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Alexander Hamilton suggested we should allocate “extra” seats in order of their fractional

parts. So A gets 4 seats and has 0.4 left over; B gets 45 seats and has 0.3 left over; C has

50 seats and 0.3 left over. We give the extra seat to A, and the final lineup would be:

• A 5 seats

• B 45 seats

• C 50 seats.

And that all seems perfectly reasonable. But there are some bugs!

For instance, what if we instead want to allocate 101 seats? This requires some annoying

arithmetic, for which we will need a calculator. When we divide 100,000,000 by 101 we get

about 990099. (In fact we get 990099.0099.) Dividing each state’s population by this number

gives a rough-cut allocation of

• A gets 4,400,000
990099

≈ 4.444 seats;

• B gets 45,300,000
990099

≈ 45.753 seats;

• C gets 50,300,000
990099

≈ 50.843 seats.

Now we give C 50 seats, B 45 seats, and A 4 seats, with two left over. Looking at the

fractional parts, the extras should go to B and C, giving a final tally of

• A 4 seats

• B 46 seats

• C 51 seats.

But there’s something weird here. When we added an extra seat, B and C both gained

seats, while A lost a seat. And that seems unfortunately backwards.

Now suppose we return to allocating 100 seats, but we take a new census, which give

updated population numbers

• A: 4,500,000

• B: 45,200,000

• C: 49,000,000

• Total population: 98,700,000.

http://jaydaigle.net/teaching/courses/2025-summer-1007-20/ 39

http://jaydaigle.net/teaching/courses/2025-summer-1007-20/


Jay Daigle The George Washington University Math 1007: Mathematics and Politics

This looks like we should allocate one seat for every 987,000 people. Then our rough cut is

• A gets 4,500,000
987000

≈ 4.559 seats;

• B gets 45,200,000
987000

≈ 45.795 seats;

• C gets 49,000,000
987000

≈ 49.645 seats.

Our rough cut is that C gets 49, B gets 45, and A gets 4, with one left over. Then B has

the largest fractional part, so our final allocation is

• A gets 4 seats

• B gets 46 seats

• C gets 50 seats.

Relative to our original situation, A has gained population while B and C have both lost

it; but A has lost a seat to B.

Finally, let’s think about what happens in the original situation if we add a fourth state

D with 1,700,000 people, and correspondingly increase the legislature from 100 to 102. We

get

• A: 4,400,000

• B: 45,300,000

• C: 50,300,000

• D: 1,700,000

• Total population: 101,700,000.

We should give one representative for every 101,700,000
102

≈ 997,059 people. So our rough

allocations are

• A gets 4,400,000
997,059

≈ 4.413 seats;

• B gets 45,300,000
997,059

≈ 45.434 seats;

• C gets 50,300,000
997,059

≈ 50.448 seats.

• D gets 1,700,000
997,059

≈ 1.701 seats.
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We give A 4 seats, B 45 seats, C 50 seats, and D 1 seat; this leaves 2 left over. One goes to

D, and the second narrowly goes to C, for a final allocation of

• A gets 4 seats

• B gets 45 seats

• C gets 51 seats

• D gets 2 seats.

We added D to the nation, and added 2 seats for D’s representatives, which all makes sense;

but this also has the effect of moving one seat from A to C, even though nothing about A

or C has changed. So there’s a lot of weirdness going on here!

The method we’ve used here is called Hamilton’s method and we’ll study it more soon.

2.1.1 Defining apportionment

We first need to set up the basic notation we’ll be using for the rest of section 2. We assume

we have n states, where n is a whole number bigger than 1. (In the USA we’ve had n = 50

since 1959.) We need to allocate h Congressional seats among those states, and this also has

to be a positive whole number. In the US House of Representatives, we have h = 435.

We list the states in some fixed order, and we use pk to represent the population of the

kth state. Then we use the letter p to represent the total population of the nation, so that

p = p1 + p2 + · · ·+ pn.

We call the collection of numbers h, n, p1, . . . , pn a census. (Notice we don’t have to tell you

the value of p since that’s determined by the pk.)

Definition 2.1. An apportionment method is a function whose input is a census h, n, p1, . . . , pn,

and whose output is a collection of positive integers a1, a2, . . . , an that add up to

a1 + a2 + · · ·+ an = h.

We think of these outputs a1, . . . , an as the number of congressional seats allocated to

each state.

In our opening example, we had n = 3, p1 = 4,500,000, p2 = 45,200,000, p3 = 49,000,000,

and h = 100. Then in our first allocation we got a1 = 4, a2 = 46, a3 = 50.
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For the rest of this section, we will regularly find ourselves comparing two numbers and

wanting to choose the larger one. This raises the question of what happens if the two numbers

are the same size, but we’re going to ignore that question completely, and just assume we

won’t have that sort of tie.

So imagine we put all 50 US states in alphabetical order. Then Maryland is the 20th

state. (Your textbook says 19th but I’ve counted six times and I’m pretty sure it’s 20th.)

In the 2020 census, Maryland has p20 = 6,185,278 people, out of a total population of

p = 331,108,434. Since we have h = 435, you’d want Maryland to have

p19

p
=

6,185,278

331,108,434
≈ 0.01868 = 1.868%

of the total seats. In our current allocation, Maryland has a20 = 8 representatives; we

compute that
a20
h

=
8

435
≈ 0.01839 ≈ 1.839%

of the Congressional representatives. We’d like to make those two percentages as close as

possible, but there are two limitations.

The first is that they can never be equal, becasue we need to allocate a whole number of

seats. The ”ideal” allocation where Maryland has 1.868% of all the seats would give it

h · p20
p

= 435 · 6,185,278

331,108,434
≈ 435 · 0.01868 ≈ 8.126

Congressional seats, but we can’t give 0.126 of a seat. So there’s no perfect answer, and

giving Maryland 9 seats would be even further off, giving it 2.069% of the seats for just

1.868% of the population.

The second constraint is that we need to allocate to every state, simultaneously. We

could decide to be “generous” and round every state’s Congressional delegation up. But

that would change h. (Based on 2020 Census figures, h would have to increase to 460.)

There’s nothing intrinsically wrong with changing h; it’s not like we couldn’t build 25 more

seats in the House of Representatives.

But if we change h to 460, then we’d have different ideal allocations. For instance, in

the 2020 Census, Kentucky has p17 = 4,509,342 people. Its ideal allocation is

h · p17
p

= 435 · 4,509,342

331,108,434
≈ 435 · 0.0136 ≈ 5.924.

We could round this up to 6, and in fact the 2020 apportionment did so. But if we rounded

every state up to get h = 460, the new ideal allocation would be

h · p17
p

= 460 · 4,509,342

331,108,434
≈ 460 · 0.0136 ≈ 6.265.

Do we round the allocation up again to 7? It’s not clear this process would ever stop.
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2.1.2 Quotas

We’ve repeatedly calculated the number h · pk/p, as the “idealized” number of Congressional

seats a state should get. We will now call this the stat’s standard quota qk = h · pk/p.

Algebraically we could also write this

qk =
pk
p/h

and we call that denominator the standard divisor s = p
h
.

If we could assign ak = qk for each k then we would automatically have a1+a2+· · ·+an =

h, which is what we want. Because

q1 + q2 + · · ·+ qn = h · p1
p

+ h · p2
p

+ · · ·+ h · p2
p

=
h

p
(p1 + p2 + · · ·+ pn)

=
h

p
· p = h.

However we (almost certainly) can’t assign ak = qk because the quota qk is probably not

a whole number, so we need to pick something else. Two obvious choices are the lower quota,

which is the standard quota rounded down ⌊qk⌋, or the upper quota, which is the standard

quota rounded up ⌈qk⌉.
So one way of looking at our next question is: which states do we round up, and which

states do we round down? This can actually be a very important question in terms of

actual political influence. In the 2010 Cenus, Montana had a standard quota of 1.40. This

was in fact rounded down to give Montana one representative, making Montanans the most

underrepresented state residents in the country. The average Congressional district had

about 710,000 people, but Montana had 994,416.

In the 2020 census, Montana’s standard quota rose to about 1.426, and the allocation

method used rounded it up to 2 Congressional seats. These seats each have about 543,000

people, and are the smallest and most overrepresented districts in the US.

2.1.3 Hamilton’s Method

Alexander Hamilton in 1792 suggested a method guaranteed to assign each state either its

lower quota or its upper quota. We call these methods quota methods.

In order to talk about these we need to give some notation for arithmetic.

http://jaydaigle.net/teaching/courses/2025-summer-1007-20/ 43

http://jaydaigle.net/teaching/courses/2025-summer-1007-20/


Jay Daigle The George Washington University Math 1007: Mathematics and Politics

Definition 2.2. The integer part of a real number x is the greatest integer less than or equal

to x. We will sometimes notate this ⌊x⌋, which we read as the “floor” of x.

The fractional part of a real number x is the difference between x and its integer part.

We can write this as x− ⌊x⌋ or sometimes as frac(x) or {x}.

Example 2.3. The integer part of 3.14159 is ⌊3.14159⌋ = 3 and the fractional part is

{3.14159} = 0.14159.

The integer part of 8.126 is ⌊8.126⌋ = 8 and the fractional part is {8.126} = 0.126.

Note that a state’s lower quota is the integer part of its standard quota, ⌊qk⌋. Hamilton

thought that every state should be guaranteed to get its lower quota, and that excess seats

should be allocated based on the size of the fractional part.

So in the 2020 Census, Maryland’s standard quota is q20 = 8.126. Maryland is guaranteed

8 seats under Hamilton’s method, but the fractional part {q20} = 0.126 is small so we’re

inclined not to give it another representative. But we saw Kentucky has a standard quota of

q17 = 5.924, with lower quota ⌊5.924⌋ = 5. We should guarantee Kentucky 5 seats, but since

the fractional part of its quote {q17} = 0.924 is quite large, we should be strongly inclined

to give it a sixth seat, as indeed we do.

Definition 2.4 (Hamilton’s method). As a provisional apportionment, assign each state its

lower quota ⌊qk⌋. Then assign the seats that remain to the states in decreasing order of the

size of the fractional parts of their standard quotas, allocating at most one per state.

Example 2.5. Apportion h = 10 seats to n = 3 states with populations p1 = 264, p2 =

361, p3 = 375.

We get a total population p = 264+361+375 = 1000. The standard divisor is s = p/h =

1000/10 = 100. That means we want to allocate roughly one seat per hundred people.

Our standard quotas are

q1 =
p1
s

=
264

100
= 2.64

q2 =
p2
s

=
361

100
= 3.61

q3 =
p3
s

=
375

100
= 3.75

The lower quotas are 2,3,3, so we allocate those 8 seats, and have 2 seats left over. The

fractional parts are 0.64, 0.61, 0.75. We assign the first seat to state 3 with fractional part
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0.75, and the second seat to state 1 with fractional part 0.64. Then we are out of seats to

assign, so state 2 sticks with its lower quota. The final apportionment is a1 = 3, a2 = 3, a3 =

4, and the process is summarized in figure 2.1.

k pk Standard

Quota qk

Lower

Quota

Upper

Quota

Fractional

Part {qk}
Hamilton

Apportionment

1 264 2.64 2 3 0.64 3

2 361 3.61 3 4 0.61 3

3 375 3.75 3 4 0.75 4

Figure 2.1: Hamilton’s Method in example 2.5

2.1.4 ”Paradoxes” in Hamilton’s method

Hamilton’s method is maybe the most obvious way to solve the apportionment problem. It’s

so obvious that it seems like this should fully resolve the question. But Hamilton’s method

does have a number of issues it runs into which aren’t ideal. In fact, these flaws are so

bad that Hamilton’s method is almost completely out of the running as an apportionment

method. It was used to some degree in the late 19th century and early 20th, and many of

these bad behaviors actually occurred in ways that made the method look much too bad.

Example 2.6 (Alabama Paradox). Suppose we have n = 3 states and h = 10 seats to

allocate to them. If they have populations of p1 = 1,450,000, p2 = 3,400,000, p3 = 5,150,000,

we get a total population of 10,000,000 and a standard divisor of 1,000,000. Then we get

the following table:

k pk Standard

Quota qk

Lower

Quota

Fractional

Part {qk}
Hamilton

Apportionment

1 1,450,000 1.45 1 0.45 2

2 3,400,000 3.40 3 0.40 3

3 5,150,000 5.15 5 0.15 5

Figure 2.2: The Alabama Paradox Part 1, in example 2.6

So far we have no problems. But now imagine Congress increases the number of seats

from 10 to h = 11. Which state will gain the additional seat?
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Well, now we have a standard divisor of 10,000,000
11

≈ 909091, and we get the following

table:

k pk Standard

Quota qk

Lower

Quota

Fractional

Part {qk}
Hamilton

Apportionment

1 1,450,000 1.595 1 0.595 1

2 3,400,000 3.740 3 0.740 4

3 5,150,000 5.665 5 0.665 6

Figure 2.3: The Alabama Paradox Part 2, in example 2.6

The lower quotas haven’t changed, but the standard quotas and thus the fractional parts

have increased. Now the winners are states 2 and 3: state 1 has actually lost a representative

because Congress added a representative to the House.

This situation is called the Alabama paradox because Alabama would have lost a seat

to an increase in h during the 1880 reapportionment. And it seems facially unfair that

increasing h should cause any state to lose a seat.

Definition 2.7. An apportionment method is called house monotone if an increase in h,

while all other parameters remain the same, can never cause any seat allocation ak to de-

crease. Thus example 2.6 shows that Hamilton’s method is not house monotone.

Why did this problem pop up? Every state’s standard quota increased between figures

2.2 and 2.3, and in fact each standard quota increased by exactly 10%. But since state 1

started with q1 = 1.45 and state 3 started with q3 = 5.15, a 10% increase in the latter is

much bigger than a 10% increase in the former.

Example 2.8 (Population paradox). We can run into a similar issue when h stays the same

but populations increase. Suppose we start again with the same data and same table as

before, with h = 10:

But now suppose, keeping h = 10, we take a new census, and populations have increased

in state 1, while decreasing in states 2 and 3. We get p1 = 1,470,000, p2 = 3,380,000, p3 =

4,650,000, for a total population of p = 9,500,000. The standard divisor is now 950,000, and

we get the following table of quotas:

State 1 has increased its standard quota q1, while q2 and q3 have decreased. But since q3

in particular has dropped from 5.15 to 4.89, the fractional part is bigger, and now states 2

and 3 both get extra seats, leaving state 1 with a1 = 1.
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k pk Standard

Quota qk

Lower

Quota

Fractional

Part {qk}
Hamilton

Apportionment

1 1,450,000 1.45 1 0.45 2

2 3,400,000 3.40 3 0.40 3

3 5,150,000 5.15 5 0.15 5

Figure 2.4: The Population Paradox Part 1 in example 2.8

k pk Standard

Quota qk

Lower

Quota

Fractional

Part {qk}
Hamilton

Apportionment

1 1,470,000 1.55 1 0.45 1

2 3,380,000 3.56 3 0.40 4

3 4,650,000 4.89 4 0.15 5

Figure 2.5: The Population Paradox Part 2 in example 2.8

This seems even worse! State 1 gained population, while states 2 and 3 lost it. But this

leads state 1 to lose a representative.

Definition 2.9. A method is called population monotone if a state can never lose a seat

when its population increases while no other state’s population increases.

In algebraic terms, whenever a′i < ai and a′j > aj, it must be the case either that p′i < pi

or p′j > pj.

Example 2.8 shows that Hamilton’s method is not population monotone.

Finally we need to consider one more situation.

Example 2.10 (Oklahoma paradox). Start again with the same data, where h = 10 and

p = 10,000,000.

Imagine the union wants to add one more state, with a population of p4 = 2,600,000. It

seems like we’d expect this state to get 3 seats, so we add a corresponding 3 seats to the

house for a new h = 13, a new population p = 12,600,000, and a new standard divisor of

s = 12,600,000
13

≈ 969,231. We get the following table:

We see that state 4 does indeed get a4 = 3 seats. But in the process, state 1 loses a seat,

and state 2 gains one.
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k pk Standard

Quota qk

Lower

Quota

Fractional

Part {qk}
Hamilton

Apportionment

1 1,450,000 1.45 1 0.45 2

2 3,400,000 3.40 3 0.40 3

3 5,150,000 5.15 5 0.15 5

Figure 2.6: The Oklahoma Paradox Part 1 in example 2.10

k pk Standard

Quota qk

Lower

Quota

Fractional

Part {qk}
Hamilton

Apportionment

1 1,450,000 1.50 1 0.50 1

2 3,400,000 3.51 3 0.51 4

3 5,150,000 5.31 5 0.31 5

4 2,600,000 2.68 2 0.68 3

Figure 2.7: The Oklahoma Paradox Part 2 in example 2.10

This is called the new states paradox or the Oklahoma paradox, due to the impact of

adding Oklahoma as a state in 1907. At the time we were using Hamilton’s method of

apportionment. When Oklahoma was added it was allocated 5 representatives; but if we

had redone the allocation New York would also have had to cede a state to Maine, which

was seen as highly undesirable.

Hamilton’s method is appealingly simple, but the examples 2.6, 2.8, and 2.10 show that

it has major flaws. Is there a way to avoid these problems?

The answer is “sort of”, and we’ll see a new class of approaches in the next section.

2.2 Divisor Methods

2.2.1 Jefferson’s Method

In section 2.1 we treated the house size h as a fixed input to our apportionment function.

For almost a hundred years the US has worked that way; the House of Representatives has

had 435 members since 1930. But prior to that, the size of Congress varied, slowly increasing

over time.
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This suggests another approach: we could have some rule for how many representatives

each state gets, based on its population, and then let h vary.

Jefferson approached things this way. He started with a theory of how large a Congres-

sional district should be. (In his case, he pointed out the Constitution says the “number of

Representatives shall not exceed one for every thirty thousand”, which suggested that 30,000

people was about the appropriate size for a district.)

In section 2.1.1 we found the standard divisor s = p/h, which was the total population

divided by the number of seats to be apportioned. We can think of this as the goal size for

a Congressional district. But instead we could start by picking a number d, which we think

of as an appropriate size for a district. We call this number a modified divisor. We can then

divide each state’s population by d to obtain its modified quota pk/d, just as we found the

quota qk = pk/s in the last section.

As before, the modified quota is probably not a whole number, so we can’t just give every

state pk/d seats. Jefferson suggested we should round each modified quota down to generate

the number of seats, and thus set ak = ⌊pk/d⌋. This has the advantage of being uniform:

everyone gets rounded down.

Poll Question 2.2.1. Why did Jefferson suggest we round down, rather than up?

In Jefferson’s original method, we start with d, compute each ak = pk/d, and then find

h = a1 + a2 + · · · + an. But we can also apply his approach to generate an apportionment

function in the sense of definition 2.1, which starts with a fixed value of h.

Definition 2.11 (Jefferson’s method). Choose a modified divisor d, compute the modified

quotas pk/d, and round these down to obtain ak = ⌊pk/d⌋. If a1 + a2 + · · · + an = h, then

we have the Jefferson apportionment. Otherwise, choose a new d and try again.

This raises a few of obvious questions.

1. Is there always a d that will work?

2. Is there more than one d that will work?

3. If we pick two different ds that both give the same total number of seats, will they give

the same apportionment?

The answer to the first question is yes, as long as we ignore the possibility of exact ties

in our calculations (which shouldn’t happen with large population numbers). We can find

the d that works pretty easily. If we get a total number of seats larger than our desired h,
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that means our d was too small and we need to make it bigger; but if we fewer seats than

our desired h, our d is too big and we need to make it smaller. This lets us zero in on the

correct d value pretty quickly. (We’ll talk about how to do this in practice in section 2.2.2.)

The answer to the second question is also yes: we can pretty much always find multiple

d values that will give us the correct number of seats. That makes question 3 especially

important; but fortunately it is completely answered by the following proposition.

Proposition 2.12. Suppose h, n, and p1, . . . , pn are given as inputs to our apportionment

function. If d and d′ are two different divisors, yielding Jefferson apportionments a1, . . . , an

and a′1, . . . , a
′
n respectively, then ak = a′k for each state k.

Remark 2.13. We will often be using notation like d′ in this section. We read this as “d

prime”, and use it a lot when we want two different versions of the same number. If we need

three, we may write d, d′, d′′.

There are other solutions to this problem but they’re often more annoying. We could

write d1 and d2, but the as already have subscripts; they could become a1,k and a2,k but

that’s unpleasant. We could also do something like using Greek letters, making our divisors

d and δ and our apportionments ak and αk, but then we need to know the Greek alphabet

and that still doesn’t help when we need three versions.

Proof. Suppose “without loss of generality” that d ≤ d′. Then, for every state k, the modified

quota pk/d for the first divisor d is at least as big as the modified quota pk/d
′ for the second

divisor d′. Rounding them down preserves that, so we must have ak ≥ a′k, and that must be

true for every state k. That means that

a1 + a2 + · · ·+ an ≥ a′1 + a′2 + · · ·+ a′n.

But we know that both apportionments give the same total number of seats, so

h = a1 + · · ·+ an ≥ a1 + · · ·+ a′n = h

and thus the two totals must be the same.

Example 2.14. Suppose we have n = 3, h = 10, and three states with

• p1 = 1,500,000

• p2 = 3,200,000

• p3 = 5,300,000
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We need to try some different divisors here.

If we try the standard divisor s = 1,000,000 we get p1/s = 1.5 and thus a1 = 1; p2/s = 3.2

and thus a2 = 3; and p3/s = 5.3 and so a3 = 5. This gives a total number of seats equal to

9. (This shouldn’t be a surprise from the work we did last section!)

This makes our house too small, so we need to make d smaller. If we try d = 900,000 we

get modified quotas of 1.66, 3.55, and 5.88, which again would give a1 = 1, a2 = 3, a3 = 5

for a total of nine seats.

Making d smaller again we can take d = 800,000. This gives modified quotas of 1.875, 4, 6.625

and a1 = 1, a2 = 4, a3 = 6 and a total of eleven seats. This is too many, so we need to make

d bigger.

Since 800,000 was too small and 900,000 was too big, we might try d = 850,000. Then

we get modified quotas of about 1.76, 3.67, 6.24 and we get a1 = 1, a2 = 3, a3 = 6, and a

total of ten seats. This works, so the Jefferson apportionment is a1 = 1, a2 = 3, a3 = 6.

s = 1,000,000 d = 900,000 d = 800,000 d = 850,000

k pk Quota Round

Down

Quota Round

Down

Quota Round

Down

Quota Round

Down

1 1,500,000 1.50 1 1.66 1 1.875 1 1.76 1

2 3,200,000 3.20 3 3.55 3 4 4 3.67 3

3 5,300,000 5.30 5 5.88 5 6.625 6 6.24 6

Total 10,000,000 9 9 11 10

Figure 2.8: The Jefferson method in example 2.14

Note that this is different from the Hamilton apportionment, which would start with our

(unmodified) quotas of 1.5, 3.2, and 5.3 to generate preliminary allocations of 1,3,5, and then

allocate the extra seat to state 1, which has the largest fractional part. So the Hamilton

apportionment would be a1 = 2, a2 = 3, a3 = 5.

2.2.2 Critical Divisors

We can calculate Jefferson’s method with that sort of trial and error approach, but there’s

a more direct way.

The breakpoints in the number d happen when one of the states would get one additional

representative. So for instance, with d = 850,000, state 3 has a quota of 6.24 which rounds
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down to 6. Another way of thinking about that sentence is that 5,300,000
6

≥ 850,000, but
5,300,000

7
< 850,000. A little work should convince you that 5,300,000

5
≥ 850,000 and 5,300,000

8
<

850,000. So there are exactly six positive integers m so that p3
m

≥ 850,000, which are 1, 2, 3,

4, 5, 6. And that’s the number of seats that state 3 was allocated!

Definition 2.15. We call a number of the form pk
m

for a positive integer k a (Jefferson)

critical divisor for the state k.

This gives us a better way of thinking about hunting for a good modified divisor. When

we choose a modified divisor d, each seat will get a number of seats equal to the number of

critical divisors that are greater than or equal to d. So we want to pick a d such that, when

we consider all states together, there are exactly h critical divisors greater than or equal to

d.

Example 2.16. Let’s use this method to look at example 2.14 again. We had populations

p1 = 1,500,000, p2 = 3,200,000, and p3 = 5,300,000. We can make a table of the critical

divisors:

d State 1 State 2 State 3

1 1,500,000/1 = 1,500,000 3,200,000/1 = 3,200,000 5,300,000/1 = 5,300,000

2 1,500,000/2 = 750,000 3,200,000/2 = 1,600,000 5,300,000/2 = 2,650,000

3 1,500,000/3 = 500,000 3,200,000/3 = 1,066,667 5,300,000/3 = 1,766,667

4 1,500,000/4 = 375,000 3,200,000/4 = 800,000 5,300,000/4 = 1,325,000

5 1,500,000/5 = 300,000 3,200,000/5 = 640,000 5,300,000/5 = 1,060,000

6 1,500,000/6 = 250,000 3,200,000/6 = 533,333 5,300,000/6 = 883,333

7 1,500,000/7 = 214,857 3,200,000/7 = 457,143 5,300,000/7 = 757,143

Figure 2.9: The Jefferson method with critical divisors from example 2.16

Counting down, we get: 5,300,000, 3,200,000, 2,650,000, 1,766,667, 1,600,000, 1,500,000,

1,325,000, 1,066,667, 1,060,000, and 883,333 makes ten. Then the eleventh number down is

800,000, so we can pick any number between 883,333 and 800,000. 850,000 is of course one

of them, and that’s why that divisor worked.

Now that we picked d = 850,000, we can also read that off our table. We see one number

bigger than 850,000 in the first column, three in the second, and six in the third. And that

gives us a1 = 1, a2 = 3, a3 = 6.
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This critical divisors approach has a couple advantages. One is that we don’t have to do

a trial-and-error search for d; we just have a straightforward calculation.

We can actually speed this up a bit more. We know the correct Jefferson divisor will

always be smaller than the standard divisor s = p/h. So we can start in with our critical

divisors there. For instance, if we look at our same example 2.14 one more time, we see that

the standard divisor s would allocate nine seats. We can calculate the next critical divisor

for each state, and we know we need to move past exactly one of them.

We see in figure 2.10 that if the standard divisor allocates ak seats, we have a critical

divisor at pk/ak, and the next critical divisor for that state will happen at pk
ak+1

. So we can

compute pk
ak+1

for each state, and allocate our next seat to whichever state has the biggest

(next) critical divisor.

s = 1,000,000 d = 850,000

k pk Standard

Quota

Lower

Quota ak

pk
ak + 1

Modified

Quota

Jefferson

allocation

1 1,500,000 1.50 1 750,000 1.76 1

2 3,200,000 3.20 3 800,000 3.76 3

3 5,300,000 5.30 5 883,333 6.24 6

Total 10,000,000 9 10

Figure 2.10: The Jefferson method with critical divisors, starting with the standard divisor

But note that if we want to allocate another seat, we may have to do the whole process

over. If we allocate a seat to state 3, we will need to compute another critical divisor for

state 3. In figure 2.10, if we want to allocate an eleventh seat, the next critical divisor for

state 1 is still 750,000, and the next critical divisor for state 2 is still 800,000. But we’ll also

need to check the next critical divisor for state 3. This is

5,300,000

6 + 1
=

5,300,000

7
= 757,143.

This is less than 800,000, so the eleventh seat goes to state 2. (But note it’s bigger than

750,000; if we allocate a twelfth seat that would go to state 3 again, not to state 1.)

2.2.3 Results on Jefferson’s Method

Jefferson’s method favors large states, relative to Hamilton’s method.
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Example 2.17. Take n = 2, h = 10, p1 = 1,800,000, and p2 = 8,200,000. The standard

divisor is s = p/h = 1,000,000. Jefferson’s method finds a modified divisor of d = 910,000.

Hamilton’s method gives state 1 a second seat; Jefferson’s method gives nine seats to state

2.

k pk Standard

Quota qk

Hamilton

Apportionment

Modified

Quota

d = 910,000

Jefferson

Apportionment

1 1,800,000 1.8 2 1.98 1

2 8,200,000 8.2 8 9.02 9

These results can get even more extreme, in a fairly surprising way.

Example 2.18. Suppose we have n = 4, h = 10, with populations given in figure 2.11.

k pk Standard

Quota qk

Hamilton

Apportionment

Modified

Quota

d = 800,000

Jefferson

Apportionment

1 1,500,000 1.5 2 1.88 1

2 1,400,000 1.4 1 1.75 9

3 1,300,000 1.3 1 1.62 1

4 5,800,000 5.8 6 7.25 7

Figure 2.11: Jefferson’s method violates quota in example 2.18

This time Hamilton’s method rounds the fourth state’s allocation up from q4 = 5.8 to 6.

But Jefferson’s method allocates even more representatives, giving the state 7 in total.

Definition 2.19. We say it’s a quota violation if an apportionment method gives a state

more representatives than its upper quota, or less than its lower quota.

An apportionment method satisfies the quota rule if it assigns every state either its lower

quota or its upper quota.

This seems like a reasonable rule that we would want an apportionment method to satisfy,

but Jefferson’s method does not. So we’re going to have to talk about it.

Sometimes it’s useful to split this rule up into two pieces.

Definition 2.20. An apportionment method satisfies the upper quota rule if it never assigns

a state more than its upper quota.
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A violation of this rules is an upper quota violation.

Definition 2.21. An apportionment method satisfies the lower quota rule if it never assigns

a state less than its lower quota.

A violation of this rules is an lower quota violation.

Proposition 2.22. Jefferson’s method satisfies the lower quota rule.

Proof. If we give every state a provisional apportionment equal to its lower quota, that’s the

Jefferson apportionment using the standard quota as a modified divisor. This will apportion

fewer than h seats. Since we want to apportion h seats, we have to lower the modified

divisor, which can only give states more seats, not fewer. Thus each state gets at least its

lower quota.

Proposition 2.23. Jefferson’s method satisfies the house monotonicity criterion.

Modified divisor perspective. An increase in h will lead to a smaller modified divisor d. De-

creasing d gives a higher modified quota pk/d for each state k. Rounding down a larger

number will never give a smaller number, so reducing d can’t ever cause a state to lose a

seat.

Critical divisor perspective. Suppose we list all the critical divisors in decreasing order. The

critical divisor pk/m is associated with state k. If we choose the first h divisors in the list,

the seats are assigned to the states that are associated to each divisor. If we increase h

to h + 1, then we will choose the first h + 1 divisors instead, which will include the first h

divisors (and then one more). So all the seats we originally allocated will still be allocated

to their original states, and then we will allocate one more. So each state will still get at

least as many seats as they did when we allocated h seats.

2.2.4 Other divisor methods

Jefferson’s method is an example of a divisor method, in which the populations of the states

are divided by modified divisors to obtain modified quotas, which are then rounded to whole

numbers.

The way divisor methods differ is in the rounding method. Jefferson’s method rounds

modified quotas down to the nearest whole number, but there are other options.
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Definition 2.24 (Adams’s method). Choose a modified divisor d. Compute the modified

quotas pk/d, and round each of these numbers up to obtain ak. If a1 + a2 + · · · + an = h

then we have the Adams apportionment.

Jefferson’s method has a bias toward large states (like Virginia!). Adams’s method has

a bias toward small states (like much of New England). Consider two situations which each

have a total population of p = 10,000,000 and a house size of h = 10.

Example 2.25. First, we give state 1 p1 = 1,800,000 people and give state 2 p2 = 8,200,000

people. Hamilton’s method gives two seats to state 1. In Jefferson’s method, we round down

the standard quota to get 1 and 8, and then we compute the critical divisors

p1
a1 + 1

=
1,800,000

2
= 900,000

p2
a2 + 1

=
8,200,000

9
= 911,111

so state 2 gains another seat at d = 911,111 and state 1 gains another seat at d = 900,000.

We can take any divisor in between to get the Jefferson apportionment; we use 910,000.

In Adams’s method we round the standard quota up to get 2 and 9, which is too many.

We compute critical divisors and we get

p1
a1

=
1,800,000

1
= 1,800,000

p2
a2

=
8,200,000

8
= 1,025,000

State 2 loses a seat when the divisor hits d = 1,025,000 and state 1 loses a seat when the

divisor hits d = 1,800,000, so we can pick any divisor between those numbers. (Actually,

that’s not quite true: state 2 will lose another seat at d = 1,171,429 so we need to pick a

1,025,000 ≤ d < 1,171,429. We chose 1,100,000.

d = 1,000,000 d = 910,000 d = 1,100,000

k pk Standard

Quota

Hamilton

ak

Jefferson

Quota

Jefferson

ak

Adams

Quota

Adams ak

1 1,800,000 1.8 2 1.98 1 1.64 2

2 8,200,000 8.2 8 9.02 9 7.45 8

Example 2.26. Now instead we give state 1 p1 = 1,200,000 people and give state 2 p2 =

8,800,000 people. Hamilton’s method gives one seat to state 1 and two to state 2. In
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Jefferson’s method, we round down the standard quota to get 1 and 8, and then we compute

the critical divisors

p1
a1 + 1

=
1,200,000

2
= 600,000

p2
a2 + 1

=
8,800,000

9
= 977778

so state 2 gains another seat at d = 977,778 and state 1 gains another seat at d = 600,000.

We need to take a divisor between those to get the Jefferson apportionment; in fact we need

one bigger than 8,800,000/10 = 880,000. In the table below we pick d = 900,000.

In Adams’s method we round the standard quota up to get 2 and 9, which is too many.

We compute critical divisors and we get

p1
a1

=
1,200,000

1
= 1,200,000

p2
a2

=
8,800,000

8
= 1,100,000

State 2 loses a seat when the divisor hits d = 1,100,000 and state 1 loses a seat when the

divisor hits d = 1,200,000, so we can pick any divisor between those numbers. We choose

1,150,000.

d = 1,000,000 d = 900,000 d = 1,150,000

k pk Standard

Quota

Hamilton

ak

Jefferson

Quota

Jefferson

ak

Adams

Quota

Adams ak

1 1,200,000 1.2 1 1.33 1 1.04 2

2 8,800,000 8.8 9 9.78 9 7.65 8

Proposition 2.27. Adams’s method violates the lower quota rule.

Proof. Exercise

Adams’s method also automatically meets the Constitutional requirement that each state

gets at least one Congressional seat, which Hamilton and Jefferson do not.

We saw that Jefferson’s method benefits large states by rounding down, while Adams’s

method benefits small states by rounding up. A reasonable response is to split the differ-

ence, and round “normally”—where fractional parts of 0.5 or greater are rounded up, while

fractional parts less than 0.5 are rounded down.

Definition 2.28 (Webster’s method). Choose a modified divisor d. Compute the modified

quotas pk/d, and round each of these numbers to the nearest whole number, whether up or

down, to obtain ak. If a1 + a2 + · · ·+ an = h then we have the Webster apportionment.
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Example 2.29. We can compute apportionments for all of these methods.

d = 1,000,000 d = 850,000

k pk Standard

Quota

Hamilton

ak

Jefferson

critical

divisor

Modified

Jefferson

Quota

Jefferson

ak

1 3,300,000 3.3 3 825,000 3.88 3

2 5,100,000 5.1 5 850,000 6 6

3 1,600,000 1.6 2 800,000 1.88 1

d = 1,100,000 d = 1,000,000

k pk Adams

critical

divisor

Modified

Adams

Quota

Adams ak Webster

critical

divisor

Modified

Webster

Quota

Webster

ak

1 3,300,000 1,100,000 3 3 942,857 3.3 3

2 5,100,000 1,020,000 4.64 5 927,273 5.1 5

3 1,600,000 1,600,000 1.45 2 1,066,667 1.6 2

We can generalize this even further. And we’re going to have to if we want to understand

the method the US actually uses today.

2.2.5 Other rounding methods

Definition 2.30. A rounding function is a function that takes in a real number, outputs an

integer, and has the following two properties:

1. If x is an integer, then f(x) = x.

2. If x > y, then f(x) ≥ f(y).

That is, every integer rounds to itself, and a bigger number will never round to a result

less than a smaller number rounds to.

We’ve seen three rounding functions so far.

• The floor f(x) = ⌊x⌋ rounds to the greatest integer less than or equal to x. This was

used in Jefferson’s method.
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• The ceiling function f(x) = ⌈x⌉ rounds to the least integer greater than or equal to x.

This was used in Adams’s method.

• The “regular” rounding where f(x) is the integer nearest to x, used in Webster’s

method.

We sometimes call this last method arithmetic rounding. This is because the cutoff is

the “arithmetic mean”, where the average of m and m+ 1 is m+(m+1)
2

= m+ 1
2
.

Instead we can use as the cutoff the so-called geometric mean, which is
√

m(m+ 1).

That is, instead of adding two numbers and then dividing by 2, we multiply the numbers

and take the square root. Then our rounding function will give f(x) = m, where m satisfies√
m(m− 1) ≤ x <

√
m(m+ 1).

This geometric rounding might seem a little weird. It is great for measuring things

like average growth rates, which behave multiplicatively. But the main reason it’s worth

discussing is that we use it in the US today.

Definition 2.31 (Hill’s method). Choose a modified divisor d. Compute the modified quotas

pk/d, and round each of these numbers geometrically to obtain ak. If a1 + a2 + · · ·+ an = h

then we have the Hill apportionment.

Joseph Hill was the chief statistician at the Census Bureau from 1909 to 1921. He

suggested this method, and in 1941, Congress officially made Hill’s method the permanent

apportionment method in the US, which it has been ever since.

We can also consider one more rounding function.

Definition 2.32. The harmonic mean of two numbers is the reciprocal of the average of

their reciprocals
1

1
x
+ 1

y

2

=
2

1
x
+ 1

y

=
2

y+x
xy

=
2xy

x+ y
.

If we want to take the harmonic mean of two adjacent numbers, we get
2m(m+ 1)

2m+ 1
.

The function f(x) = m where m satisfies the condition

2m(m− 1)

2m− 1
≤ x <

2m(m+ 1)

2m+ 1

is the harmonic rounding function.

Definition 2.33. Choose a modified divisor d. Compute the modified quotas pk/d, and

round each of these numbers harmonically to obtain ak. If a1 + a2 + · · · + an = h then we

have the Dean apportionment.
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This method was considered in 1830, but was never used.

Because these rounding functions can be hard to work with, it’s useful to have a table of

cutoffs. This is table 8.7 in your textbook, which is reproduced here:

Figure 2.12: Cutoffs for rounding small numbers according to various methods

Rounding Function and Method

Rounding

Up

Harmonic

Rounding

Geometric

Rounding

Arithmetic

Rounding

Rounding

Down

Adams Dean Hill Webster Jefferson

0–1 0 0 0 0.5 1

1–2 1 1.333 1.414 1.5 2

2–3 2 2.400 2.449 2.5 3

3–4 3 3.429 3.464 3.5 4

4–5 4 4.444 4.472 4.5 5

5–6 5 5.455 5.477 5.5 6

6–7 6 6.462 6.481 6.5 7

7–8 7 7.467 7.484 7.5 8

So for instance, the number 1.42 would be rounded down to 1 by arithmetic rounding (and

of course by Jefferson rounding down), but it would be rounded up by geometric rounding

and harmonic rounding. The number 5.46 would be rounded up by harmonic rounding, but

down by geometric rounding and arithmetic rounding.

Just like with Jefferson’s method, we can compute all the divisor apportionments with a

critical divisor approach. For the Jefferson method, we computed numbers of the form pk/m,

since we were looking for breakpoints where some state would get a new representative. In

effect, we wanted to know when pk/d = m was an integer, and then we rearranged to get

the divisor d = pk/m.

In other methods, these break points don’t occur when pk/d is an integer, but when

instead when pk/d crosses one of the rounding thresholds that we saw in figure 2.12.

For instance, in the Hill method with geometric rounding, our apportionments change

when we cross a cutoff of the form
√

m(m+ 1). So we want to find out when pk/d =√
m(m+ 1), and thus rearranging, we compute all the divisors d = pk√

m(m+1)
. We call these
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Hill critical divisors ; they are the values of d at which a state acquires an additional seat.

You might notice a bit of a glitch here: when m = 0 we wind up dividing by zero. We’re

just going to think of this as an infinitely large number, corresponding to the fact that under

Hill’s method, each state is guaranteed at least one representative. Then we write the rest

of our numbers in order from largest to least, and take the h largest (including the infinite

ones, one for each state). An appropriate value for the Hill divisor is any number between

the hth largest element and the h+ 1st largest element in this list.

It’s useful to have summarized what critical divisors look like for each method.

Figure 2.13: Summary of critical divisor formulae

Method Critical divisor for state k

Adams
pk
ak

Dean
pk(2(ak + 1))

2ak(ak + 1)

Hill
pk√

ak(ak + 1)

Webster
pk

(ak + 1/2)

Jefferson
pk

ak + 1

Example 2.34. Consider a problem with n = 3, h = 10, and populations of 1,385,000;

2,390,00; and 6,225,000. The lower quotas are 1,2, and 6, and the Hamilton apportionments

will be 1, 3, and 6. If we round arithmetically for Webster’s method, all of these will round

down and we get 1, 3, and 6 again. We need to lower d to get an apportionment. We can

compute the Webster critical divisors:

p1
a1 + 1/2

=
1,385,000

1.5
= 923,333

p2
a2 + 1/2

=
2,390,000

2.5
= 956,000

p3
a3 + 1/2

=
6,225,000

6.5
= 957,692.

We allocate the next seat at 957,692 so we need to pick a d smaller than that, but bigger

than 956,000. In the table below we use d = 957,000. This gives us a final seat allocation

a1 = 1, a2 = 2, a3 = 7.
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If we round geometrically for Hill’s method, all three standard quotas also round down.

That means we need to lower d again. We compute the Hill critical divisors

p1√
a1(a1 + 1)

=
1,385,000√

1 · 2
=

1,385,000

1.414
= 979,343

p2
a2(a2 + 1)

=
2,390,000√

2 · 3
=

2,390,000

2,449
= 975,713

p3
a3(a3 + 1)

=
6,225,000√

6 · 7
=

6,225,000

6.481
= 960,538.

So the next delegate is allocated at d = 979,343, to state 1. We need a d smaller than that,

but bigger than 975,713. In the chart below we use d = 977,000.

d = 1,000,000 d = 957,000 d = 977,000

k pk Standard

Quota

Hamilton

ak

Webster

Quota

Webster

ak

Hill Quota Hill ak

1 1,385,000 1.385 1 1.447 1 1.418 2

2 2,390,000 2.390 3 2.497 2 2.446 2

3 6,225,000 6.225 6 6.505 7 6.372 6

We could also just do the calculation by making tables of critical divisors. For Adams

we would get:

m State 1 State 2 State 3

0 1,385,000/0 = ∞ 2,390,000/0 = ∞ 6,225,000/0 = ∞

1 1,385,000/1 = 1,385,000 2,390,000/1 = 2,390,000 6,225,000/1 = 6,225,000

2 1,385,000/2 = 692,500 2,390,000/2 = 1,195,000 6,225,000/2 = 3,112,500

3 1,385,000/3 = 461,667 2,390,000/3 = 796,667 6,225,000/3 = 2,075,000

4 1,385,000/4 = 346,250 2,390,000/4 = 597,500 6,225,000/4 = 1,556,250

5 1,385,000/5 = 277,000 2,390,000/5 = 478,00 6,225,000/5 = 1,245,000

6 1,385,000/6 = 230,833 2,390,000/6 = 398,333 6,225,000/6 = 1,037,500

The ten largest “numbers” (including infinity three times) are in blue on the table; that

gives an allocation of a1 = 2, a2 = 2, a3 = 6. This corresponds to any divisor larger than

1,195,000 but less than 1,245,000; indeed we can pick d = 1,200,000 and get lower quotas of

1.154, 1.991, and 5.188, which round up to 2, 2, and 6.

Taking the same approach for Hill’s method gives us the table:
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m State 1 State 2 State 3

0 1,385,000/0 = ∞ 2,390,000/0 = ∞ 6,225,000/0 = ∞

1 1,385,000/
√
2 = 979,343 2,390,000/

√
2 = 1,689,985 6,225,000/

√
2 = 4,401,740

2 1,385,000/
√
6 = 565,424 2,390,000/

√
6 = 975,713 6,225,000/

√
6 = 2,541,346

3 1,385,000/
√
12 = 399,815 2,390,000/

√
12 = 689,934 6,225,000/

√
12 = 1,797,003

4 1,385,000/
√
20 = 309,695 2,390,000/

√
20 = 689,934 6,225,000/

√
20 = 1,391,952

5 1,385,000/
√
30 = 252,865 2,390,000/

√
30 = 436,352 6,225,000/

√
30 = 1,136,524

6 1,385,000/
√
42 = 213,710 2,390,000/

√
42 = 368,785 6,225,000/

√
42 = 960,538

The tenth number on this list is 979,343, and the eleventh is 975,713, so we can pick any

number between them. In the table above we used 977,000.

2.3 Evaluating Apportionment Methods

We want a method to treat all states the same, only taking their populations into account.

Definition 2.35. An apportionment method is neutral if permuting the populations of

states permutes the resulting numbers of seats in the same way.

This doesn’t prevent a bias against large states, or small states; Adams’s and Jefferson’s

methods are both neutral in this sense. But it prohibits a bias against Western states, or

states that start with a vowel. (Arguably our current method is not neutral, if you include

Washington D.C. on your list of states to be apportioned.)

Definition 2.36. An apportionment method is proportional if it produces the same result

for two censuses with the same house size, and the same relative populations pk/p.

The idea here is that we shouldn’t care about the absolute numbers of people, just their

relative share of the population. We say the population distribution is the list p1/p, p2/p, . . . , pn/p,

which tells you what fraction of the total population each state has. A proportional appor-

tionment method can be computed from just the population distribution, without knowing

the absolute numbers of people.

The core intuition here is that if every state doubles its population, this shouldn’t affect

the apportionment at all.

Proposition 2.37. Hamilton’s method, and every divisor method, is proportional.
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Proof. Hamilton’s method depends only on the standard quotas qk = pk/s. But the standard

divisor s = p/h, so we can rewrite this as pk = hpk
p
, so the standard quota depends only on

the house size h and the population distribution pk/p.

For divisor methods, we are dividing pk by a divisor d. If all populations increase by

a factor of c, we can increase the divisor d by that same factor and get the same modified

quotas, with the same rounded result.

Alternatively, if we think in terms of critical divisors, we are writing the critical divisors

in order from greatest to least. These critical divisors look like pk/f(m) for some function

of the whole numbers m. If we instead compute pk/p
f(m)

those numbers will be in exactly

the same order and give the same result; so the output depends only on the population

distribution.

There’s another obvious sense of fairness: smaller states should definitely not get more

seats.

Definition 2.38. An apportionment method is order-preserving if, whenever ai > aj, then

pi > pj.

Note this just says that a state with more seats must have a larger population. The

opposite is not true; a state with a larger population may not have more seats. It can’t have

fewer seats, by this rule, but it’s possible for two states with different populations to have

the same number of seats. (Indeed, that’s very hard to avoid!)

We could call this property “population monotone”, but we’re going to save that for the

stronger idea first stated in definition 2.9.

We can also recall the ideas from definitions 2.19 and 2.20:

Definition. We say it’s a quota violation if an apportionment method gives a state more

representatives than its upper quota, or less than its lower quota.

An apportionment method satisfies the quota rule if it assigns every state either its lower

quota or its upper quota.

An apportionment method satisfies the upper quota rule if it never assigns a state more

than its upper quota.

A violation of this rules is an upper quota violation.

Hamilton’s method obviously satisfies the quota rule. We saw that Jefferson’s method

violates the upper quota rule, and similarly Adams’s method violates the lower quota rule.

We’ll see in section 2.3.5 that any divisor method has to have quota violations.
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2.3.1 House Monotonicity

Recall definition 2.7:

Definition. An apportionment method is called house monotone if an increase in h, while

all other parameters remain the same, can never cause any seat allocation ak to decrease.

Thus example 2.6 shows that Hamilton’s method is not house monotone.

The Alabama paradox in 1880 is a violation of house monotonicity, and shows that

Hamilton’s method is not house monotone. Had h increased from 299 to 300, Alabama’s

apportionment would have dropped from 8 seats to 7. See also example 2.6 where we saw

an example of Hamilton’s method failing house monotonicity.

Divisor methods do better. We saw in proposition 2.23 that Jefferson’s method is house

monotone. That’s just a special case of the following result:

Proposition 2.39. All divisor methods are house monotone.

Proof. Consider any divisor method applied to states with populations p1, p2, . . . , pn, and

suppose a divisor d gives an apportionment of h seats.

If we want to increase h, we will need to decrease d, which will increase the modified quota

pk/d for each k. Rounding a larger number can never give a smaller result (by definition

2.30). So no state can ever get a smaller apportionment from a larger h.

2.3.2 Population Monotonicity

Recall definition 2.9:

Definition. A method is called population monotone if a state can never lose a seat when

its population increases while no other state’s population increases.

In algebraic terms, whenever a′i < ai and a′j > aj, it must be the case either that p′i < pi

or p′j > pj.

We know that Hamilton’s method doesn’t satisfy population monotonicity, from example

2.8. However, divisor methods do better here:

Proposition 2.40. All divisor methods satisfy population monotonicity.

Proof. Suppose a′i < ai and a′j > aj. By definition 2.30 of rounding functions, this must

mean that the modified divisor pi/d of state i decreased, and the modified divisor of pj/d

increased. That gives us the two inequalities

p′i/d
′ < pi/d p′j/d

′ > pj/d.
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We can rearrange these inequalities to get

p′i < pi
d′

d
p′j > pj

d′

d
.

Now we think about two possibilities. First, let’s suppose that d′ ≤ d and so d′/d ≤ 1.

That implies that

p′i < pi
d′

d
≤ pi

and thus p′i < pi, which satisfies the definition of population monotonicity.

If that’s not true, then we must have d′ > d and so d′/d > 1. That would imply that

p′j > pj
d′

d
> pj

and thus p′j > pj, also satisfying the definition of population monotonicity.

Corollary 2.41. Hamilton’s method is not a divisor method.

This corollary is more interesting that it seems. Obviously we didn’t define Hamilton’s

method as a divisor method. But conceivably there could be some weird rounding function

that would always give the same result as the Hamilton algorithm. But in fact that’s not

the case; any divisor method will be population monotone, and Hamilton’s method is not,

so there’s no possible rounding function that will give those results.

We can leverage our ideas here to make proposition 2.39 kind of superfluous..

Proposition 2.42. Any method that is population monotone is also house monotone.

Proof. Suppose a method is population monotone, and consider a situation in which our

house size changes from h to h′ = h + 1. And suppose that no populations change, which

we can write as p′i = pi and p′j = pj.

Increasing the house size means that at least one state will gain a seat. So assume

(without loss of generality) that state j gains a seat, and thus a′j > aj.

Now imagine that some state loses a seat, meaning that a′i < ai. By population mono-

tonicity, we must have either p′i < pi, or p
′
j > pj. But we know that p′i = pi and p′j = pj, so

that’s not possible.

Therefore no state can lose a seat, and so the method is house monotone.

An interesting note is that this proof works because the definition of population mono-

tonicity doesn’t have an all-else-equal clause; the property holds even if h changes. All of

that work is loaded into the premise that one states gains seats and another loses seats.
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Proposition 2.43. Any method that is population monotone and neutral must be order-

preserving.

Proof. Suppose a method is neutral and population monotone, and suppose we get a census

with pj > pi. We can construct another census by swapping the populations of states i and

j—that is, we write p′i = pj and p′j = pi, and then p′k = pk for all other states k.

This results in a (hypothetical) increase in population for state i, and a decrease in

population for state j. Since p′i ≥ pi and p′j ≤ pj, it follows that either a
′
i ≥ ai, or a

′
j ≤ aj.

(Or both!)

But by neutrality, swapping the populations should swap the apportionments, so a′i = aj

and a′j = ai. Thus we can make at least one of the following two arguments:

aj = a′i ≥ ai

aj ≥ a′j = ai.

In either case, we see that aj ≥ ai.

Thus if pj > pi, we must have aj ≥ ai, which is the definition of order preserving.

2.3.3 Relative population monotonicity

There are actually two ways of thinking about population change. If a state goes from an

original population pk to a later population p′k, the most obvious way to measure the change

is with the absolute change ∆pk = p′k − pk. We can also think of this as the arithmetic

population change. It’s the amount by which the population has grown.

Remark 2.44. ∆ is the Greek letter capital Delta, which is a capital D. It’s often to refer to

a change in a quantity over time; you can think of it as standing for “distance”. You may

recognize it from algebra, where we sometimes write the slope of a line as ∆y
∆x

, the change in

y divided by the change in x.

But this isn’t actually how we talk about population growth most of the time. Generally

we talk about growth in percentage terms. This makes sense, because gaining 10,000 people

makes a much bigger difference for a state with 500,000 people than to a state with 20,000,000

people.

Instead, we often want to talk about the relative change

∆pk
pk

=
p′k − pk

pk
.

This measures how big the growth is relative to the starting population.
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k 1 2 3

pk 10,000 10,000 100,000

p′k 11,000 20,000 110,000

∆pk 1,000 10,000 10,000

∆pk/pk 0.1 1.0 0.1

% 10% 100% 10%

Example 2.45. Suppose we have the following table of populations:

State 2 and State 3 have the same absolute population growth; each gains 10,000 people

between the two censuses. But that change is much more dramatic for state 2 than state 3,

because state 2 started with many fewer people. State 1 and state 3 have the same relative

population growth, of 10%; state 2, rather, grows 100% between the two censuses.

Definition 2.46. An apportionment method is relative population monotone if, whenever

we consider states with positive population and a′i < ai and a′j > aj, then
∆pj
pj

> ∆pi
pi

.

This is essentially the same as definition 2.9 that we studied in section 2.3.2, but instead

it focuses on relative changes. This makes it better at comparing states of very different

populations. It also makes the criterion simpler, because we don’t need to worry about

whether the states are growing or shrinking; we can just make one statement.

We need to consider the case where a state has zero population because we want to

talk about introducing new states from one census to another; we can think of this as the

state having zero population in the first census. But we can’t talk about relative population

growth from a baseline of zero population, since that would involve dividing by zero.

This property is stronger than regular population monotonicity. In particular, if a method

is relative population monotone, then it’s population monotone.

Proposition 2.47. If an apportionment method is relative population monotone, then it is

population monotone.

Proof. Suppose a′i < ai and a′j > aj, and that all populations are positive. By relative

population monotonicity, we conclude that
∆pj
pj

> ∆pi
pi

. We can conclude, in particular, that

either ∆pj/pj is positive, or ∆pi/pi is negative. (Or both!)

If ∆pj/pj is positive, that means that ∆pj is positive, and thus p′j < pj. If ∆pi/pi is

negative, that means that ∆pi is negative, and thus p′i < pi. And that’s the definition of

population monotonicity.
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But the property isn’t too strong. We can achieve it with reasonable methods.

Proposition 2.48. All divisor methods are relative population monotone.

Proof. Suppose we care computing apportionments of two censuses using a divisor method,

and suppose that a′i < ai and a′j > aj. We know that the modified quota pi/d must have

decreased and the modified quota of pj/d must have increased. Another way of writing that

is:

p′i
d′

<
pi
d

p′j
d′

>
pj
d

thus
p′i
pi

<
d′

d

p′j
pj

>
d′

d

We can link these two inequalities together, since they both have the d′/d term.

p′i
pi

<
p′j
pj

p′i
pi

− 1 <
p′j
pj

− 1

p′i
pi

− pi
pi

<
p′j
pj

− pj
pj

p′i − pi
pi

<
p′j − pj

pj
.

And that’s just the statement that ∆pi
pi

<
∆pj
pj

, which is what we needed to prove.

And in fact relative population monotone isn’t all that much stronger than population

monotone at all. In particular, if we assume proportionality, they’re the same.

Proposition 2.49. If an apportionment method is proportional and population monotone,

then it’s relative population monotone.

Proof. Suppose an apportionment method is proportional, but not relative population mono-

tone. That means we have some pair of states i and j where a′i < ai and a′j > aj, but
∆pj
pj

≤ ∆pi
pi

.

For notational convenience we set

r = 1 +
∆pi
pi

s = 1 +
∆pj
pj

and observe that 0 < s since the relative growth rate can’t be less than −100%, and s ≤ r

by our hypothesis.
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Now we compute

rpi =

(
1 +

∆pi
pi

)
= pi +∆pi = pi +

(
p′i − pi

)
= p′i

spj =

(
1 +

∆pj
pj

)
= pj +∆pj = pj +

(
p′j − pj

)
= p′j

Now suppose we have a third census (which we’ll denote with double-prime letters, like

p′′), where for every state k we set p′′k = p′k/r. This is a pure rescaling of the second census,

where every state’s population is scaled by a factor of r. By proportionality, this can’t change

the apportionment, so we have a′′k = a′k for every state k. But we can compute

p′′i = p′i/r = pi

p′′j = p′j/r =
s

r
p′j ≤ pj.

If we compare our original census to this third census, we must have a′′i = a′i < ai and

a′′j = a′j > aj; but we have p
′′
i = pi and p′′j ≤ pj, meaning neither p′′i < pi nor p

′′
j > pj. So this

apportionment system is also not population monotone.

Since we’re generally only going to consider proportional methods, we can use population

monotonicity and relative population monotonicity interchangeably; in the future we won’t

really specify.

2.3.4 The New States Paradox

An interesting specific situation is when a new state is introduced entirely to the union; this

has happened many times in the history of the US (most recently with Hawai’i in 1959).

We can interpret this as a situation where a state’s population increases from 0 to a positive

number. (Even the Adams method doesn’t assign a seat to a state with a population of

zero!)

Definition 2.50. Suppose state k is joining the union as a new state, and thus pk = 0 and

p′k > 0. Suppose there are other states i and j whose populations are unchanged. We say a

new states paradox or Oklahoma paradox occurs if a′i < ai and a′j > aj.

Remark 2.51. There’s nothing weird about a′i < ai, or a
′
j > aj, in isolation. Maybe adding

the new state means some old states have to lose representation; that will certainly happen

if we don’t increase h. And if we do increase h to accommodate the new state, then maybe

other states will get increased representation too.
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But if both happen at once, that means that adding the new state has caused other states

to transfer seats among themselves; that’s the odd bit.

We don’t have a ton of results to prove here, though. If an apportionment method is

population monotone, then in particular it can’t suffer from the new states paradox. Thus

by proposition 2.40, no divisor method can suffer from the new states paradox. On the other

hand, example 2.10 shows that Hamilton’s method is vulnerable to the new states paradox.

(This also furnishes another proof that Hamilton’s method is not a divisor method.)

2.3.5 The Impossibility Theorem

Let’s return to one of our earliest criteria, the quota criterion. Hamilton’s method satisfies

the quota rule; we’ve seen that Jefferson’s method does not. (We will see that no divisor

method can satisfy the quota rule, in fact.) There are other quota methods, such as Lowndes’s

method:

Definition 2.52 (Lowndes’s method). As a provisional apportionment, assign every state

its lower quota. Then assign the remaining seats to the states, at most one per state, in

decreasing order of {qk}
⌊qk⌋

, the ratio of the fractional part of the standard quota to the lower

quota.

This has the same basic approach as Hamilton’s method: we give every state its lower

quota, then use the fractional part of the standard quota to decide which states to round up

to the upper quota. But it gives an extra bonus to smaller states, since {qk}
⌊qk⌋

will be bigger

when ⌊qk⌋ is smaller.

The underlying logic is that the extra representative gives more “extra representation” in

the smaller state; cutting a seat from a smaller state will create bigger districts than cutting

a seat from a larger state will.

For example, if we have one state with quota qi = 2.3 and another state with quota

qj = 7.9, then Hamilton’s method would give an extra representative to state j rather than

state i. But if we deny state i its extra district, that makes each district .3
2
= 15% bigger than

the desired standard divisor; if we instead deny state j, that makes each district .9
7
≈ 12.86%

bigger than the desired size. So Lowndes argues that it’s better to give the extra district to

state i.

Exercise 2.53. Lowndes’s method is not house monotone or population monotone, and is

vulnerable to the new states paradox.
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So far we’ve seen quota methods, which fail various monotonicity criteria; and we’ve

seen divisor methods, which we haven’t shown can avoid quota violations. (Adams’s method

avoids upper quota violations, and Jefferson’s method avoids lower quota violations, but

that’s more because they have strong biases in the other direction than because they partic-

ularly respect quotas.)

In fact, there’s no way to completely solve both these problems at once.

Theorem 2.54 (Balinski and Young). No apportionment rule that is neutral and population

monotone can satisfy the quota rule.

Proof. We can prove this by constructing a specific example where there’s no neutral way to

apportion seats that satisfies both population monotonicity and the quota rule. So consider

a pair of censuses where we want to allocate h = 10 seats:

p1 = 69,000 p′1 = 68,000

p2 = 5,200 p′2 = 5,500

p3 = 5,000 p′3 = 5,600

p4 = 19,900 p′4 = 5,700.

In the “before” situation, we have a total population of 100,000, so the standard divisor

is s = 10,000 and the standard quotas are

q1 = 6.99 q2 = 0.52 q3 = 0.50 q4 = 1.99.

Since the method satisfies the quota rule, we know that state 1 has 7 seats or less, and

state 4 has 2 seats or less, so states 2 and 3 have to get at least one seat between them.

Because this method is population monotone and neutral, proposition 2.43 shows it must be

order-preserving; so state 2 must receive at least one seat.

Now let’s consider the after census. The total population is 84,800 so the standard divisor

is 8,480. We can compute the standard quotas for this after census, and we get

q′1 = 8.02 q′2 = 0.65 q′3 = 0.66 q′4 = 0.67.

Again by the quota rule, state 1 has to get at least 8 seats, leaving at most two seats for

the other three states. By the order-preserving property, we can’t give a seat to state 2 if

states 3 and 4 don’t have one each, and since there are only two seats to go around, so state

2 cannot get any seats at all.
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So if we have a neutral, population monotone method that satisfies the quota rule, it

must give state 1 at most 7 seats in the before situation, and at least 8 in the after situation;

it must give state 2 at least one seat in the before situation, and cannot give state 2 any in

the after situation. Thus state 1 will gain seats, and state 2 will lose seats.

But the population of state 1 had declined while the population of state 2 has increased.

That’s a violation of population monotonicity, so we cannot have such a method.

Corollary 2.55. No divisor method satisfies the quota rule.

This shows that even though both the quota rule and population monotonicity are intu-

itively appealing, but we cannot have them both; we have to choose. (In the US today we

use Hill’s method, which is a divisor method and thus violates the quota rule.)

But theorem 2.54 doesn’t mention house monotonicity. And it turns out it is in fact

possible to get a method that satisfies the quota rule and is still house monotone.

2.4 Balinski and Young Apportionment

Jefferson’s method is very prone to quota violations, but it’s straightforward to calculate

and seems like it has a fair amount of constitutional support. Can we tweak it to also satisfy

the quota rule?

Theorem 2.54 says we can’t get everything we want. If it satisfies the quota rule, it can’t

possibly be population monotone. But it turns out we can maintain the house monotonicity

and still keep the quota rule. And we can do this fairly straightforwardly, by just instituting

a rule that we never allow an upper quota violation.

We will define this apportionment method iteratively, or inductively. We’re going to

assign seats one at a time, in order; so that the way we assign 10 seats is to assign the first

9 seats, and then assign one more.

Recall we can look at Jefferson’s method itself that way. We start for h = 0, in which case

we obviously apportion 0 seats to each state, ak = 0. (In formal “mathematical induction”

we call this the base case.)

If we’ve already apportioned h seats, and have a1, a2, . . . , an, we can always apportion the

next seat. We compute the critical divisors pk
ak+1

, which represent how large a Congressional

district in state k would be if we assign it one more seat; the larger this number is, the less

overrepresented state k would be if we give them another seat. Thus the h + 1st seat goes

to the state with the largest critical divisor. We saw this worked out in example 2.16.

http://jaydaigle.net/teaching/courses/2025-summer-1007-20/ 73

http://jaydaigle.net/teaching/courses/2025-summer-1007-20/


Jay Daigle The George Washington University Math 1007: Mathematics and Politics

This method is straightforward, and obviously house monotone. But it is unfortunately

prone to upper quota violations; in most reasonable situations large states will get more than

their upper quotas. For instance, with 2020 census data, California has a standard quota

of 51.99, giving it an upper quota of 52 and a lower quota of 51. Jefferson’s method would

allocate it 54 seats. Jefferson’s method would also give New York and Texas one seat more

than their upper quotas; it would give Vermont and Wyoming no seats at all.

Definition 2.56 (Balinksi and Young method). We define the method of Balinski and Young

inductively.

If h = 0, then set ak = 0 for every k.

Suppose we have an apportionment for some fixed h, given by a1, a2, . . . , an such that

a1 + · · ·+ an = h.

For each state k, compute the quotient pk
ak+1

and call this the strength of the kth state’s

claim for the next seat. We “want” to give the next seat to the state with the strongest

claim, but we don’t want to have any upper quota violations.

So we say a state is eligible if ak +1 ≤
⌈
(h+ 1)pk

p

⌉
, so that giving the state another seat

would not give an upper quota violation.

Then we assign the h+ 1st seat to the eligible state with the strongest claim.

Poll Question 2.4.1. Why do we use Jefferson rather than Adams or Hill or Webster as the

base for this method?

This method will sort of “obviously” avoid upper quota violations, since we simply refuse

to allocate a seat when it would cause an upper quota violation. But that maybe leads to a

question of what happens if no state is eligible. Fortunately that can’t happen.

Proposition 2.57. At each inductive stage of the method of Balinski and Young, at least

one state is eligible to receive the next seat.

Proof. The basic idea of this proof is that for a state to be ineligible, we have to have given

it a lot of seats, relative to the total number of seats h. But we can’t give every state a lot

of seats relative to h, because h is the total number of seats we can allocate. So at least one

state must have space.

Consider a census with populations p1, p2, . . . , pn, and suppose that Balinski and Young

have apportioned a1, a2, . . . , an seats for a total of h seats to the various states.

After we apportion the h+1st state, the standard divisor will be s = p
h+1

, so the standard

quota for each state will be pk
s
= (h + 1)pk

p
. A state will be ineligible if giving it one more

seat will put it over this upper quota; thus it’s ineligible if ak + 1 >
⌈
(h+ 1)pk

p

⌉
.
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But since those are both whole numbers, the only way we can have ak+1 bigger than the

upper quota is if ak is at least as big as the upper quota. (If we have fractions that wouldn’t

be true; we can have 3 < 3.5 but 3 + 1 > 3.5. But for whole numbers, if ak + 1 is bigger

than some whole number than ak must be at least the same size.) So if a state is ineligible,

we must have

ak ≥
⌈
(h+ 1)

pk
p

⌉
≥ (h+ 1)

pk
p
.

Now if every state is ineligible, we have the following series of inequalities:

a1 ≥ (h+ 1)
p1
p

a2 ≥ (h+ 1)
p2
p

...
...

an ≥ (h+ 1)
pn
p
.

If we add all these inequalities, we get

a1 + · · ·+ an ≥ (h+ 1)
p1
p

+ (h+ 1)
p2
p

+ · · ·+ (h+ 1)
pn
p

= (h+ 1) (p1 + p2 + · · ·+ pn)
1

p

= (h+ 1)(p)
1

p
= h+ 1.

That is, once we add up all these allocations, we see that a1 + · · ·+ an ≥ h+ 1, we have to

have already allocated at least h + 1 seats. But we’re at the step where we have allocated

exactly h seats, so that can’t be true. So that means at least one state must have

an < (h+ 1)
pn
p

and be eligible to receive the next seat.

Let’s work through an example comparing Jefferson’s method to Balinski and Young’s

method. Suppose we have states A,B,C with populations p1 = 7, p2 = 22, p3 = 71, for a

total p = 100. Suppose we want to attain a house size of h = 15. We can think of Jefferson’s

method as working iteratively like this, as seen in figure 2.14

Now let’s see what this would look like in the method of Balinski and Young. The basic

approach will be the same, but at each step we remove ineligibles, and avoid awarding seats

to any state that isn’t eligible for another seat. We see this process in figure 2.15
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h Jefferson Critical Divisor Jefferson Apportionment

p1
a1+1

p2
a2+1

p3
a3+1

a1 a2 a3

0 0 0 0

1 7 22 71 0 0 1

2 7 22 35.5 0 0 2

3 7 22 23.67 0 0 3

4 7 22 17.75 0 1 3

5 7 11 17.75 0 1 4

6 7 11 14.2 0 1 5

7 7 11 11.83 0 1 6

8 7 11 10.14 0 2 6

9 7 7.33 10.14 0 2 7

10 7 7.33 8.875 0 2 8

11 7 7.33 7.89 0 2 9

12 7 7.33 7.1 0 3 9

13 7 5.5 7.1 0 3 10

14 7 5.5 6.45 1 3 10

15 3.5 5.5 6.45 1 3 11

Figure 2.14: Jefferson’s method worked iteratively

2.4.1 The Quota Rule for Balinski and Young

It’s clear that the Balinski-Young method is house monotone, because of the way we produce

it iteratively: the seats are given away one at a time, and we never back up and change an

earlier apportionment. It’s also clear that it satisfies the upper quota rule, because we simply

never assign a seat that would violate the upper quota rule.

The trick is to show that it also satisfies the lower quota rule. The Jefferson method, of

course, satisfies the lower quota rule, but that’s not realy for any deep reason. We need to

check that the Balinksi and Young method doesn’t ever accidentally ruin that.

Proposition 2.58. The Balinski and Young method satisfies the lower quota rule.

http://jaydaigle.net/teaching/courses/2025-summer-1007-20/ 76

http://jaydaigle.net/teaching/courses/2025-summer-1007-20/


Jay Daigle The George Washington University Math 1007: Mathematics and Politics

h Jefferson Critical Divisor Jefferson Apportionment Standard Quotas Balinski and Young

Apportionment

p1
a1+1

p2
a2+1

p3
a3+1 a1 a2 a3 q1 q2 q3 a1 a2 a3

0 0 0 0

1 7 22 71 0 0 1 0.07 0.22 0.71 0 0 1

2 7 22 35.5 0 0 2 0.14 0.44 1.42 0 0 2

3 7 22 23.67 0 0 3 0.21 0.66 2.13 0 0 3

4 7 22 7.75 0 1 3 0.28 0.88 .84 0 1 3

5 7 11 17.75 0 1 4 0.35 1.1 3.55 0 1 4

6 7 11 14.2 0 1 5 0.42 1.32 4.26 0 1 5

7 7 11 11.83 0 1 6 0.49 1.54 4.97 0 2 5

8 7 7.33 11.83 0 2 6 0.56 1.76 5.68 0 2 6

9 7 7.33 10.14 0 2 7 0.63 1.98 6.39 0 2 7

10 7 7.33 8.88 0 2 8 0.7 2.2 7.1 0 2 8

11 7 7.33 7.89 0 2 9 0.77 2.42 7.81 0 3 8

12 7 5.5 7.89 0 3 9 0.84 2.64 8.52 0 3 9

13 7 5.5 7.1 0 3 10 0.91 2.86 9.23 0 3 10

14 7 5.5 6.45 1 3 10 0.98 3.08 9.94 1 3 10

15 3.5 5.5 6.45 1 3 11 1.05 3.3 10.65 1 3 11

Figure 2.15: Apportionment by the Balinski and Young method

Proof.

Corollary 2.59. The Balinski and Young method is not population monotone.

Proof. Since the Balinski and Young method satisfies the quota rule, Theorem 2.54 (proven

by Balinski and Young!) shows it can’t be population monotone.

2.5 Why choose different rounding functions?

In sections 2.2.4 and 2.2.5 we covered a collection of rounding methods, which all give almost,

but not quite, the same results. What’s the point of having all that variety?
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We talked about this briefly at the time, but each rounding method is “the best” at a

slightly different sort of thing. We can view each rounding function as finding the optimal

solution to a specific question; they differ in what question they answer.

2.5.1 Degree of Representation and Webster’s Method

Definition 2.60. The degree of representation of a state k is the number ak
pk
, which measures

the fraction of a congressional seat each individual citizen is allocated.

In the 2020 census, Maryland had 6,185,278 people and got allocated 8 congressional

seats. This means that each citizen of Maryland is represented by 8
6,185,278

≈ .000,001,293 of

a Congressperson.

Because every state gets a whole number of representatives, we can’t give every state

exactly the same degree of representation. But Webster’s method, the divisor method with

arithmetic rounding does the best it can.

Proposition 2.61. Webster’s method is the unique apportionment method with the following

property: the difference between the degrees of representation of any two states cannot be

decreased by transferring a seat from the better represented state to the worse represented

state.

2.5.2 District Size and Dean’s Method

We also can’t make it so that districts have the same number of people in each state. But

Dean’s method, the divisor method with harmonic rounding, does the best it can.

Proposition 2.62. Dean’s method is the unique apportionment method with the following

property: the difference between the sizes of districts in any two states cannot be made smaller

by transferring a seat from the smaller-district state to the bigger-district state.

2.5.3 Average district size and Hill’s Method

There is more that one way to compare how close two numbers are. One is to subtract them

from each other and see how big the result is—or in other words, how far it is from 0. But

this doesn’t work well when our numbers have radically different scales. It might not really

capture what we care about to say that 1 is closer to 1,000,000 than 1,000,000 is to 2,000,000.

Another way of measuring the distance between two numbers is to divide one by the

other, and see how close we are to 1. By this method, 100 and 200 are closer than 10 and

30 are, and 1,000,000 is much closer to 2,000,000 than it is to 1.
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It makes sense to say that we want the districts in different states to be as close in size as

possible. If we measure closeness by subtraction—arithmetically—then Dean’s method does

this best. But if we measure closeness geometrically, by multiplication, then Hill’s method,

the divisor method with geometric rounding, does the best.

It also makes sense to say we want the states to have degrees of representation as close

as possible. Once again, we saw that Webster’s method does that, if we measure closeness

arithmetically. But if we measure closeness geometrically, once again Hill’s method does the

best we can.

Proposition 2.63. Hill’s method is the unique apportionment method with the following

property: the ratio between the average sizes of districts in any two states (expressed as

number greater than 1) cannot be made smaller by transferring a seat from the smaller-

district state to the bigger-district state.

Further, it is also the unique apportionment method with the property: the ratio between

the degrees of representation in any two states cannot be made smaller by transferring a seat

from the better-represented state to the worse-represented state.

http://jaydaigle.net/teaching/courses/2025-summer-1007-20/ 79

http://jaydaigle.net/teaching/courses/2025-summer-1007-20/

	Apportionment
	Congressional Apportionment and Hamilton's Method
	Defining apportionment
	Quotas
	Hamilton's Method
	"Paradoxes" in Hamilton's method

	Divisor Methods
	Jefferson's Method
	Critical Divisors
	Results on Jefferson's Method
	Other divisor methods
	Other rounding methods

	Evaluating Apportionment Methods
	House Monotonicity
	Population Monotonicity
	Relative population monotonicity
	The New States Paradox
	The Impossibility Theorem

	Balinski and Young Apportionment
	The Quota Rule for Balinski and Young

	Why choose different rounding functions?
	Degree of Representation and Webster's Method
	District Size and Dean's Method
	Average district size and Hill's Method



