
Math 2233 Practice Final Solutions

Instructor: Jay Daigle

• You will have 90 minutes for this test.

• You are not allowed to consult books or notes during the test, but you may use a one-page, two-sided,
handwritten cheat sheet you have made for yourself ahead of time. You may not use a calculator.

• The exam has 7 problems, one on each mastery topic. The exam has 9 pages total.

• Each part of each major topic is worth 10 points. The question on topic S5 is worth 10 points.

This practice test has too many questions so you can get in a broad spectrum of practice. I expect one
question per topic for M1 through M4, and two questions on M5 and M6, on the real final.

• The real final will have optional questions on S1 through S4. Answering one correctly can earn you
up to two bonus points on the test. More importantly, answering one correctly can raise your overall
mastery score.

• Read the questions carefully and make sure to answer the actual question asked. Make sure to justify
your answers—math is largely about clear communication and argument, so an unjustified answer is
much like no answer at all.

When in doubt, show more work and write complete sentences.

• If you need more paper to show work, I have extra at the front of the room.

• Good luck!

Name:

Recitation Section:
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Problem 1 (M1). The final will have one problem like this.

(a) Find the area of the parallelogram with vertices (1, 3, 2), (1, 5, 3), (2, 4, 5), (2, 6, 6).

Solution: The area of the parallelogram is the magnitude of the cross product of the vectors spanning
it. Those vectors are u⃗ = (0, 2, 1) and v⃗ = (1, 1, 3) so we compute

u⃗× v⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
0 2 1
1 1 3

∣∣∣∣∣∣ = (6− 1)⃗i+ (1− 0)⃗j + (0− 2)k⃗ = 5⃗i+ j⃗ − 2k⃗

∥u⃗× v⃗∥ =
√
25 + 1 + 4 =

√
30.

(b) Find the orthogonal decomposition of 2⃗i+ 5⃗j − 4k⃗ with respect to 5⃗i− j⃗ + 2k⃗.

Solution:

v⃗parallel =
(2, 5,−4) · (5,−1, 2)

(5,−1, 2) · (5,−1, 2)
(5,−1, 2)

=
10− 5− 8

25 + 1 + 4
(5,−1, 2) =

−1

10
(5,−1, 2) =

(
−1

2
,
1

10
,
−1

5

)
v⃗⊥ = v⃗ − v⃗parallel = (2, 5,−4)−

(
−1

2
,
1

10
,
−1

5

)
=

(
5

2
,
49

10
,
−19

5

)
.

Problem 2 (M2). The final will have one problem like this.

(a) Find a linear approximation of f(x, y) = sin(x)
√

1− y2 near the point (0, 0). Use it to estimate
f(.1, .1).

Solution:

∇f(x, y) = (cos(x)
√
1− y2, sin(x)y/

√
1− y2

∇f(0, 0) = (1, 0)

f(x, y) ≈ 0 + 1(x− 0) + 0(y − 0) = x

f(.1, .1) ≈ .1.

(b) Find an equation for the plane tangent to g(x, y) = 4xy2 + 3xy at the point (3, 2).

Solution: We compute that

gx(x, y) = 4y2 + 3y gx(3, 2) = 16 + 6 = 22

gy(x, y) = 8xy + 3x gy(3, 2) = 48 + 9 = 57

g(3, 2) = 48 + 18 = 66

and so the plane will have equation

z = 22(x− 3) + 57(y − 2) + 66.

(c) Consider the contour plot below. Estimate ∂f
∂x (Q) and ∂f

∂y (P ). Sketch the gradient vector at R.
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Solution: At P , we see that moving to the right two units will increase the output by five, and
moving to the left by one unit will decrease it by 3. So the partial derivative is somewhere between
5/2 and 3/1; we can estimate it as the average 11/4 but anything in that range is a good estimate.

At P , we see that moving in the y direction moves tangent to the contour. So this ∂f
∂x (P ) = 0.

At R we know the gradient should be perpendicular to the contour. And since it points in the direction
of greatest increase, it should be pointing out of the shape, since the contours are lower towards the
inside.

Problem 3 (M3). The final will have one problem like this.

(a) Find and classify all the critical points of g(x, y) = x2 − 3xy + 5x− 2y + 6y2 + 8.

Solution:

gx(x, y) = 2x− 3y + 5

gy(x, y) = −3x+ 12y − 2

0 = −9y + 15 + 24y − 4 = 15y + 11

so we see that y = −11/15 and x = −18/5. This is the only critical point. The second derivatives are

gxx(x, y) = 2 > 0

gxy(x, y) = −3

gyy(x, y) = 12

D = gxxgyy − g2xy = 24− 9 = 15 > 0

so this point is a local minimum.

(b) Find the minimum value of f(x, y) = 4xy on the unit circle.
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Solution: Our constraint equation is x2 + y2 = 1. So we have:

4y = λ2x

4x = λ2y

λ = 2y/x

4x = 4y2/x

4x2 = 4y2

x2 = y2

x = ±y

Plugging either of these into our constraint equation gives 2x2 = 1 and thus x = ±
√

1/2. Thus we

have four critical points: (
√

1/2,
√

1/2), (
√
1/2,−

√
1/2), (−

√
1/2,

√
1/2), (−

√
1/2,−

√
1/2). Plug-

ging these in gives 2,−2,−2, 2 respectively. So the absolute minimum value is −2.

Problem 4 (M4). The final will have one problem like this.
Let g(x, y, z) = z2(x2 + y2) and let W be a cone with its point at the origin and base given by the circle

z = 2, x2 + y2 = 2.

(a) Set up integrals to compute
∫
W

g dV in cartesian, cylindrical, and spherical coordinates.

Solution:∫ 2

0

∫ z/
√
2

−z/
√
2

∫ √
z2/2−x2

−
√

z2/2−x2

z2(x2 + y2) dy dx dz or

∫ √
2

−
√
2

∫ √
2−x2

−
√
2−x2

∫ 2

√
2(x2+y2)

z2(x2 + y2) dz dy dx

∫ 2

0

∫ z/
√
2

0

∫ 2π

0

z2r2 · r dθ dr dz or

∫ √
2

0

∫ 2

√
2r

∫ 2π

0

z2r2 · r dθ dz dr∫ arctan(1/
√
2)

0

∫ 2π

0

∫ 2/ cosϕ

0

(ρ cosϕ)2(ρ2 sin2 ϕ cos2 θ + ρ2 sin2 ϕ sin2 θρ2 sinϕdρ dθ dϕ

=

∫ arctan(1/
√
2)

0

∫ 2π

0

∫ 2/ cosϕ

0

(ρ cosϕ)2(ρ2 sin2 ϕ)ρ2 sinϕdρ dθ dϕ

(b) Choose one of the integrals from part (a) and evaluate it.

Solution: The cylindrical coordinates are probably the easiest to work with. We compute∫ 2

0

∫ z/
√
2

0

∫ 2π

0

r3z2 dθ dr dz = 2π

∫ 2

0

∫ z/
√
2

0

r3z2 dr dz

= 2π

∫ 2

0

r4

4
z2|z/

√
2

0 dz = 2π

∫ 2

0

z6/16 dz

= 2πz7/112|20 = 256π/112 = 16π/7.

(c) Compute
∫∫

R
x+ y dA over the parallelogram with vertices (0, 0), (4, 1), (7,−8), (3,−9).
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Solution: We want to reparametrize this with x = 4s + 3t, y = s − 9t. [You could also use x =
4s+ t, y = s− 3t, which would work out about the same.] Then we get bounds of s, t ∈ [0, 1]× [0, 1],
and we’re integrating the function 5s− 6t.

To compute the Jacobian get

∂(x, y)

∂(s, t)
=

∣∣∣∣∂x∂s ∂x
∂t

∂y
∂x

∂y
∂t

∣∣∣∣ = ∣∣∣∣4 3
1 −9

∣∣∣∣ = −36− 3 = −39

so
∣∣∣∂(x,y)∂(s,t)

∣∣∣ = 39. Then the integral is∫∫
R

x+ y dA =

∫ 1

0

∫ 1

0

5s− 6t · 39 dt ds

= 39

∫ 1

0

5st− 3t2|10 ds = 39

∫ 1

0

5s− 3 ds

= 39
(
5s2/2− 3s

)∣∣1
0
= 39(5/2− 3) = −39/2.

Problem 5 (M5). (a) Set up an integral to compute the work done by the force field F⃗ (x2y, yz3, x+y+z)
on a particle that moves from (1, 0, 0) to (1, 0, 3) by spiraling clockwise around the z-axis three times
with radius 1.

Solution: We can parametrize with r⃗(t) = (cos(2πt),− sin(2πt), t) for t ∈ [0, 3]. (This makes sure
we both move clockwise and start at (1, 0, 0); the 2π is to make a change of 1 in t cause a complete
rotation.) Then the integral is∫ 3

0

(
− cos2(2πt) sin(2πt),− sin(2πt)t3, (cos(2πt)− sin(2πt) + t)

)
· (−2π sin(2πt),−2π cos(2πt), 1) dt

=

∫ 3

0

2π sin2(2πt) cos2(2πt) + 2π sin(2πt) cos(2πt)t3 + cos(2πt)− sin(2πt) + t dt.

(b) Find the circulation of F⃗ (x, y) = −3y⃗i+2x⃗j counterclockwise around the rectangle 0 ≤ x ≤ 4, 0 ≤ y ≤
2.
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Solution: We compute ∥∇ × F⃗ (x, y)∥ = |2 − (−3)| = 5. The curve is oriented so the interior is on
the left-hand side, so by Green’s Theorem, we have∫

C

F⃗ · dr⃗ =

∫
R

∥∇ × F⃗∥ dA =

∫ 2

0

∫ 4

0

5 dx dy = 40.

(c) Find the integral of the vector field F⃗ (x, y, z) = yz⃗i+xzj⃗+xyk⃗ over the path r⃗(t) = (t+sin(10πt)et, t2−
cos(2πt), 2t) as t varies from 0 to 2.

Solution: We observe that F⃗ (x, y, z) = ∇xyz. Thus by the fundamental theorem of line integrals
we can just plug in the two endpoints. We have

r⃗(0) = (0,−1, 1)

r⃗(2) = (2, 3, 4)∫
C

F⃗ · r⃗ = 24− 0 = 24.

Problem 6 (M6). (a) Let F⃗ (x, y, z) =
√
x5 + x⃗i + (x2yz − z)⃗j + (x

√
z3 + y + y)k⃗. Compute the flux of

the vector field ∇ × F through a net whose rim is the unit circle y2 + z2 = 1 in the x = 0 plane,
oriented in the i⃗ direction.
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Solution: Instead of trying to parametrize the net, we use Stokes’s theorem to just compute the
circulation of F⃗ along the boundary. This means we don’t even need to take the curl!

If the net is oriented in the i⃗ direction, that’s the same as the circle being oriented counterclockwise
when viewed from the positive x-axis. So we can parametrize the circle with r⃗(t) = (0, cos(t), sin(t)).
Then by Stokes’s theorem, we have∫

S

∇× F⃗ · dA⃗ =

∫
C

F⃗ · dr⃗ =

∫ 2π

0

(0,− sin(t), cos(t)) · (0,− sin(t), cos(t)) dt

=

∫ 2π

0

sin2(t) + cos2(t) dt =

∫ 2π

0

1 dt = 2π.

(b) Find the flux of the vector field F⃗ (x, y, z) = (x, xy, z) through the surface parametrized by r⃗(s, t) =
(st, s2, t2) oriented upwards, for 0 ≤ s ≤ 3, 0 ≤ t ≤ 2.

Note: the arrows in the diagram are the orientation of the surface, not a representation of F .

Solution: We need the normal vector. We have

r⃗s = (t, 2s, 0)

r⃗t = (s, 0, 2t)

r⃗s × r⃗t =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
t 2s 0
s 0 2t

∣∣∣∣∣∣ = (4st− 0)⃗i+ (0− 2t2)⃗j + (0− 2s2)k⃗

is oriented downwards, so instead we take −4st⃗i+ 2t2j⃗ + 2s2k⃗. Then the integral is∫ 3

0

∫ 2

0

(st, s3t, t2) · (−4st, 2t2, 2s2) dt ds

=

∫ 3

0

∫ 2

0

−4s2t2 + 2s3t3 + 2s2t2 dt ds

=

∫ 3

0

∫ 2

0

2s3t3 − 2s2t2 dt ds

=

∫ 3

0

1

2
s3t4 − 2

3
s2t3

∣∣∣2
0
dx

=

∫ 3

0

8s3 − 16

3
s2 ds = 2s4 − 16

9
s3
∣∣∣3
0

= 162− 48 = 114.

(c) Compute
∫
S
F⃗ · dA⃗, where F⃗ (x, y, z) = xy2⃗i+ x2yj⃗ + (x2y2 + z)k⃗ and S is the surface (including both

ends!) of a closed cylinder with radius 2 centered on the z-axis, from z = −2 to z = 2.
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Solution: We want to use the divergence theorem here. We compute ∇ · F⃗ = y2 + x2 +1, so we can
integrate x2 + y2 + 1 over the cylinder. We use cylindrical coordinates, and get∫ 2

−2

∫ 2π

0

∫ 2

0

(r2 + 1) · r dr d θ dz =

∫ 2

−2

∫ 2π

0

1

4
r4 +

1

2
r2|20 dθ dz

=

∫ 2

−2

∫ 2π

0

6 dθ dz = 48π.

Problem 7 (S5). Let

F⃗ (x, y, z) = (0, x, y) G⃗(x, y, z) = (2x, z, y) H⃗(x, y, z) = (3y, 2x, z).

(a) For each field, either find a scalar potential function or prove that none exists.

Solution: We have

∇× F⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂
∂x

∂
∂y

∂
∂z

0 x y

∣∣∣∣∣∣ = (1− 0)⃗i+ (0− 0)⃗j + (1− 0)k⃗ ̸= 0⃗

∇× G⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂
∂x

∂
∂y

∂
∂z

2x z y

∣∣∣∣∣∣ = (1− 1)⃗i+ (0− 0)⃗j + (0− 0)k⃗ = 0⃗

∇× H⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂
∂x

∂
∂y

∂
∂z

3y 2x z

∣∣∣∣∣∣ = (0− 0)⃗i+ (0− 0)⃗j + (2− 3)k⃗ ̸= 0⃗

so the only field that could be conservative is G⃗. To find a potential function, we would need

∂g

∂x
= 2x

∂g

∂y
= z

∂g

∂z
= y

The first equation tells us g(x, y, z) = x2+h(y, z). The second tells us that g(x, y, z) = yz+ i(x, z) and
the third tells us that g(x, y, z) = yz+j(x, y). Putting this all together, we can take g(x, y, z) = x2+yz.

(b) For each field, either find a vector potential function or prove that none exists.
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Solution: ∇ · F⃗ = 0 so F⃗ is irrotational. We set up a system

−∂F2

∂z
= 0

∂F1

∂z
= x

∂F2

∂x
− ∂F1

∂y
= y.

The first equation tells us that F2 = g(x, y), and the second equation tells us that F1 = xz + h(x, y).
Then the third equation tells us that gx(x, y) − hy(x, y) = y; one reasonable solution for this is

g(x, y) = xy. Thus F⃗ has a vector potential of (xz, xy, 0).

∇ · G⃗ = 2, so G⃗ is not a curl field. ∇ · H⃗ = 1, so H⃗ is not a curl field.
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