Jay Daigle The George Washington University Math 2233: Multivariable Calculus

1 Vectors and Geometry

1.1 Functions, twospace, and threespace

In this course, our goal is to understand how to mathematically model things that happen
in two-dimensional or three-dimensional space. So we have to begin by understanding how

that space itself works.

Definition 1.1. We use R to denote the set of all real numbers.

We use R? = {(z,y) : z,y € R} to denote the set of ordered pairs of real numbers. This
is sometimes called the real plane or the cartesian plane.

We use R = {(z,y,2) : z,y, 2 € R} to denote the set of ordered triples of real numbers.

This is sometimes called real threespace.

Remark 1.2. We can use R" to refer to the set of ordered sets of n real numbers. This is
an n-dimensional space. Everything we do in this course can be generalized to work in R™
rather than R? or R?, but in this course we're going to confine ourselves to the two- and
three-dimensional cases.

This is mainly because those cases are easier to draw. But it’s also harder to talk about

the higher-dimensional cases without linear algebra.

Geometrically, we think of R? as representing a plane; the first real number gives the
x-coordinate, or horizontal distance from the origin; the second gives the y-coordinate or
vertical distance.

Similarly, R? represents three-dimensional space, with the three numbers giving the dis-
tances along three perpendicular axes. We put these axes together according to the right-
hand rule, which says that if we look from the positive side of the z-axis we see the xy-plane

in the usual orientation.

Example 1.3. We can use R? and R? to describe many ideas other than just physical
geometry. For instance, we may have an economic model that depends on both the inflation
rate and the unemployment rate; this is a pair of numbers, so we can think of it as a point
in R2.

Or you can have an experiment that depends on the pressure, volume, and temperature
of some gas; since this is three numbers, we can view it as a point in R3.

One of the crucial insights of multivariable calculus is that while none of these begin as
geometric ideas, we can convert them into geometric language, and then use geometric tools

to study them.
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Remark 1.4. We can take this logic further. If we're analyzing real estate, we may want to
describe a house by its number of rooms, floor area, lot size, and walkability score. This is
four numbers, so we can view it as a point in the “four-dimensional space” R*.

Mathematically, R* works just like R? and R3. We won’t be talking about it in this
course, but that’s entirely because it’s harder to draw. In Linear Algebra (Math 2184 or
Math 2185) you learn techniques for handing higher-dimensional data sets like this.

We can compute the distance between two points using the pythagorean theorem. If (z,y)

and (a, b) are two points in R?, then the distance between them is given by \/(z — a)? + (y — b)2.
Similarly, if (z,y,z) and (a,b,c) are two points in R3, then the distance between them is

given by v/(z —a)?+ (y — b)2 + (2 — ¢)%

Example 1.5. The distance between (3,5) and (1,7) is

VB=124+(56-7)=V4+4=2V2
The distance betweent (1,—1,0) and (3,2,1) is

VI =32+ (-1-224+(0-12=v4+9+1=14.

Example 1.6. Suppose we want to describe a sphere in threespace. The unit sphere is the
set of all points of distance one from the origin. That is, it’s the set of all points (z,y, 2)
such that \/(z —0)2+ (y — 0)2 + (2 — 0)2 = 1. We can simplify this equation and see that
the unit sphere is precisely the set of points that satisfy the equation 2% + y? + 22 = 1.

More generally, if we have a sphere of radius r centered at the point (a,b,c), then it
is the set of all points of distance r from (a,b,c). So it’s the set of all points such that

V(z—a)2+ (y—0)2+ (2 — )2 =r, or in other words (z — a)? + (y — b)® + (z — ¢)*> =12

To describe relationships, we need to be able to talk about functions defined on the
space. Recall that a function is a rule that takes an input and assigns a specific output.
Thus functions are a mathematical way of encoding a relationship between the input and
output. Note that a function always gives exactly one output, and always gives the same
output for a given input.

Importantly, we haven’t specified what types of outputs functions have—in the abstract,
a function can take any type of input and give any type of output. We say that the set of
possible inputs for a function is the domain.

In your previous calculus courses you have seen “single—variable” functions, which take in

a single real number and output a single real number. In this course we will study functions
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of “multiple variables”. That is, either their input, or their output, or both will consist of

more than one real number.
Example 1.7. e Altitude as a function of latitude and longitude

e (as pressure as a function of volume and temperature

Temperature as a function of latitude and longitude and altitude

Volume of a box as a function of length and width and height

Position as a function of time

Direction and distance to your destination as a function of where you are

In this course we’ll think about four or five basic categories of functions. This taxonomy
is a bit artificial but it will still be useful to think about:

Type of function Name Example of use
R—R Single-variable functions
R — R% or R3 Space curve Position as a function of time
R2or R® - R Multivariable function Temperature as a function of position
R? — R3 Parametrized surface
R? — R? or R? — R3 Vector field Direction of a force as a function of position

You are already familiar with single-variable functions from your previous calculus courses.
We will begin this course by studying vectors, which are the building blocks of multidimen-
sional geometry, and extending them to understand space curves. The bulk of the course
will be concerned with multivariable functions, that take in multiple variables but output
a single variable. At the end we will turn our attention to functions that both take in and
output more than one variable. we will look at functions that output more than one variable

as well.

1.2 Vectors in Space

When we discuss multidimensional geometry, we rely heavily on the language of vectors.

Definition 1.8 (informal). A vector is a mathematical object that encodes both direction
and size or magnitude. We notate vectors with an arrow over them, as in 7.
A displacement vector from one point to another is an arrow with its tail at one point

and its head at the other. It gives the distance between the two points, and the direction
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from the first point to the second point. The vector from the point P to the point @ is
written ]@

Notice that it is possible for ]@ to be the same vector as 1@ even if A and B are different
points from P and (). The vector encodes the distance and direction, but not the specific
points.

A displacement vector whose tail is at the origin is called a position vector.

A quantity that has size but no direction is called a scalar.

Remark 1.9. We have a distinction between vectors and scalars in single-variable calculus, but
we can mostly avoid thinking too hard about it since there are only two possible directions.

Vectors show up, for instance, in the idea of one-sided limits.

We can do arithmetic on vectors. Adding vectors, geometrically, represents the displace-

ment of following one vector and then the other, putting them tail-to-tip.

Definition 1.10. The sum v+ w of two vectors is the vector given by following ¢ and then
following w. Thus if v = ]@ and W = Cﬁ% then v+ w = ]ﬁ
The difference of two vectors @ — ¥/ is the vector that, when added to ¥, gives w. That

is, if ¥ and w have the same base point, @ — ¢ is the arrow from the tip of ¢ to the tip of .

4 T T T T T 4 T T T T T

@
2l 12l |

7 — @
i i

T+

0l 1ol .
P P v
—2 | 1 9l B
_4 | | | | | _4 | | | | |
4 2 0 2 4 4 2 0 2 A

Scalar multiplication represents stretching a vector, and also possibly reversing its direc-

tion.

Definition 1.11. If A is a scalar (real number), and ¥ is a (displacement) vector, then the
scalar multiple of ¥ by X is a vector stretched by a factor of |A|. It points in the same
direction as ¢ if A > 0 and in the opposite direction if A\ < 0.

If A = 0 then A7 is the zero vector 0, which has zero magnitude. This vector is the same

regardless of direction, and corresponds to ﬁ for any point P.
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Vector arithmetic has a bunch of useful properties.

Fact 1.12. Let u,v,w be vectors, and r,s be scalars. Then:

1.

2.

8.

9.

(Additive commutativity) @+ U= U+ 4
(Additive associativity) (4 + V) + W = d + (U + W)

(Additive identity) @ + 0 = 1.

(Additive inverses) i+ (—1)0 = 4 — U. We write (—1)7 = —7.

(Distributivity) r(d + U) = rid + rv
(Distributivity) (r + s)d = ru + su
(Multiplicative associativity) r(si) = (rs)u
(Multiplicative Identity) 14 = @

(Zero Length) 07 = 0.

Remark 1.13. In linear algebra we say this list of properties defines a vector space.

This seems like a long list of properties, but most of them are things you were probably

assuming were true anyway. We could prove any of these properties by drawing vectors or

working through some algebra, but we’ll pass over that because it’s boring and not very

enlightening. .
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1.2.1 Vector Components and Algebra

So far we’ve defined vectors and stated a bunch of properties they have, but all of this has
been stated entirely in terms of geometry. We’d now like to establish the other side of our
duality and express vectors in algebraic terms.

We first define three “standard” vectors.

Definition 1.14. We define the vector 7 = (0,0,0)(1,0,0) to be the vector of length 1 in
the positive z direction. Similarly we define j to be the vector of length 1 in the positive y

direction, and k to be the vector of length 1 in the positive z direction.

A

Y

.

~.

Remark 1.15. In linear algebra terms, these three vectors are a basis for R?. In fact, these

three vectors are the standard basis vectors €7, €, €3.

We can take any vector in R? and express it in terms of these vectors. If we know how
far to go in the x direction, how far in the y direction, and how far in the z direction, then
we know exactly where to go, so adding and multiplying these vectors can give us everything

we need to identify any possible vector.

Definition 1.16. If v = Uﬁ—l— vgf+ U3E where the v; are scalars, then we say that we have
resolved U into components, and the summands are the components of v.
U1

. . . — — — v1 . .
We will sometimes write ¥ = (v, ve,v3) or U = (53) or v = [53} . But in this course we

will usually find it more convenient to use the , 7, k notation.

Example 1.17. Let P = (1,3,2) and @ = (2, —4,1). Then the vector 1@ —i—Tj— k.
The vector 2i — 14;' — 2k is parallel to ﬁ) since it is a scalar multiple of 1?65 But the
vector 1 + 77 + k is not.
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This sort of resolution or decomposition makes it easy to do vector arithmetic alge-

braically.

Example 1.18. If 7 = ]@ —i—T)— kand @ = 27 — 37 + 2/2, then @ + ¥ = 3i — 105 + k.
We have 37 = 3i — 21 — 3k.

1.3 Angles, Magnitudes and the Dot Product

We talk about vectors as having a direction and a magnitude. We’ve talked about this
geometrically in terms of arrows; we've algebraically resolved them into components. But we

can also numerically specify a direction in terms of angles, and then simply give a magnitude.

1.3.1 Vector Magnitudes

Definition 1.19. The magnitude of a vector 7 = vy7 + v] + vsk is ||7] = /02 + v2 + v2.

If ||7|| = 1 then we say that v is a unit vector.

Example 1.20. Let 7 = 37+ 1 — 2k and @ = 2i — j+4k. Then ||7]] = V3% + 1 + 22 = /14
and ||| = v/22 4+ 12 4+ 42 = v/21.

If we want unit vectors in the same direction, we can take the vectors

0l 0l 3 L 1 - 5 2 P
- = = 1 —_

17l V14 /14 \/14‘7 V14
i W 2 - 1

L4 -
+ .

P— p— k
o] ~ Va2l V2l V2l Va2l

Example 1.21. Let’s find a unit vector based at the point (x,y, z) that points directly away

from the origin.
We need a vector that points in the same direction as zi + y}—i— z/;, but has unit length.

So we compute
|2+ yj + 2| = Va2 + 47 + 22
SO our unit vector is
X - Yy - z =

2 2 2l+ 2 2 2‘7+ 2 2 2k'
VIEty -+ VIEty -+ VIEty -+

From the Pythagorean theorem we can see that the magnitude is actually the length of

the arrow corresponding to the vector. In two dimensions, we see that the length of the
vector vi7 + va] is \/v? + v2; the same argument works in three (or more) dimensions by

repeatedly applying the Pythagorean theorem.
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4 [ |
2+ U U2 R
0
0l & |
(070) U1
! ! ! ! ! ! !

—‘2 -1 0 1 2 3 4 5
We can also use trigonometry to relate the components v; and vs with the magnitude
|U]| and the angle 6.
Proposition 1.22. If a vector ¥ = vii + vo] makes an angle of 0 with the x axis, then:
e v = ||U]| cosb
e vy = ||U]| siné
e O = arctan (v2/v;) (or ™ — arctan (v2/v,) .)

Example 1.23. Let ¢ = 3i +4j. Then ||7]] = V32 +42 = 5, and ¥ makes an angle of
approximately .92 with the x axist.

Let w have length 7 and make an angle of 7/6 with the x axis. Then

V3. T

W = 7 cos(m/6)i + Tsin(r/6)] = St 55’ ~ 6.067 + 3.5;.

1.3.2 The Dot Product
To think more about angles and magnitudes, we want to consider the dot product.

Definition 1.24. If v = 1)177—1— vzj%— 'Ugl; and W = w1;+ w2f+ w;;E then the dot product

v-w= V1W + VaWo + V3Ws3.
Example 1.25. Let = 3i + 15 — 2k and @ = 27 — i+ 4k. Then -0 =6—1—8 = —3.

Notice the dot product takes in two vectors and gives a scalar. Also notice that [|¥]| =

it

U-
Proposition 1.26. If u, v, W are vectors and X is a scalar, then:
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We can use the dot product to find the angles between two vectors.

Proposition 1.27. If v,4 are vectors, and 6 is the angle between them, then v - w =

15]][]7]| cos 6.

Proof. We can prove this using the law of cosines, which states that if a triangle has sides
of length a, b, ¢, and the angle opposite side ¢ has measure 6, then ¢ = a? + b? — 2abcos 6.
(Notice that if ¢ is the hypotenuse of a right triangle, then cosf = cosw/2 = 0 and we

recover the pythagorean theorem).

4

2, |

0 U L -

v —w
Ll /) *
w

_4 | | | | |

—4 —2 0 2 4

So form a triangle with sides U, @, and v — . Then the law of cosines gives us
111 + [ol* — 219 [|w]| cos 6 = |7 — ]|
(v 4+ v3 +v3) + (wi +w; + w3) — 2||7|[|@]| cos 0 = (v — wi1)® + (v2 — wa)® + (v3 — ws3)?
= v} — 2w + W}
+ 02 — 20wy + w2
+ v3 — 2uzws + w3
and subtracting the squared terms from both sides gives
—2[|9||||7]| cos @ = —2vywy — 2wy — 2v3w3

[9]][[]] cos 6 = viwy + vaws + vaws = V- 0.
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Example 1.28. Suppose ||#]] = 3 and ||@|| = 5. What is the maximum possible dot product,
and when does this happen? What is the minimum possible dot product, and when does
this happen? When is the dot product 07

The dot product is v - w = 15cosf. So the dot product is maximized when cos#@ is
maximized, which happens when 6 = 0; thus when the vectors point in the same direction,
their dot product is 15. Similarly, when 6 = 7 the vectors point in opposite directions, and
their dot product is minimized at —15.

The dot product is 0 when cos = 0, which happens when § = 7/2. Thus this occurs

when the vectors are at a right angle.

Definition 1.29. We say that two vectors v and w are perpendicular or orthogonal if v = 0.

This corresponds to the two vectors forming a right angle.

If we know the angle between two vectors, we can use this to compute the dot product;

but more often we use the dot product to compute the angle between two vectors.

Example 1.30. Let v = 3i + 2; and @ = 2i — ; Then v-w = 6 —2 = 4. We see that

|7]| = v/13 and ||@|| = v/5 so

9 < v W ) ( 4 ) 1.05
= arccos | ———— | = arccos [ — | = 1.05.
ks Kl V65

W =6

Let = 3i+2j — k and & = 2i — j + 4k. Then ¥ - — 2 —4=0. Thus the angle

between ¥ and w is
U - W

arccos | ———— | = arccos(0) = /2.
(||U||||w||)

We see that ¢ and @ are orthogonal.

1.3.3 Projection

We can also use the dot product to project a vector onto a line. In fact this is probably the
best way to understand what the dot product “really means”.
Earlier we used trigonometry to resolve a vector into its i and j components. But we can

do the same thing to a coordinate axis defined by any vector.

Definition 1.31. Let v, & be two non-zero vectors. We define the projection of ¥ onto u to

be
. veu o, U-U
Uparallel = ||’l_[||2u - - ’l_[u

In particular, if 4 is a unit vector, then Upapane = (U - @)4.

—

We define the orthogonal complement of U on i to be Tperp = U1 = U — Uparallel-
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Proposition 1.32. Let v, 4 be non-zero vectors. Then:

® Uparalier 1S parallel to .

Thus Uparanier Tepresents the part of U that goes in the same direction as i, and U, represents

the remainder.
Proof. We'll prove the first fact assuming the angle 6 between ¢ and « satisfies 0 < 6 < 7/2.
The proof for 7/2 < 6 < 7 is basically the same but involves a slightly different picture. We

never need to consider 6 > 7 since we can just look at the angle going around the other way.

Consider the following diagram:

-2 -1 0 1 2 3 4 5

We see by trigonometry that ||Uparanel|| = ||¥]| cos 6. Since we know that taane has the same

direction as i, we see that
. . 0
Uparallel = HUH COs ew

—

— 1
]|

= [|1Fllf}l] cos &

<y
£
!

1
1

by proposition [1.32]
We can now prove the second fact with simple algebra. We have

1-u= (U - Uparallel) U=V U — Uparallel * U
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]

Example 1.33. Let’s decompose the vector 7 = 3i + 45' with respect to @ = 2i + j

We compute

v-u 6+4 -
_»arae:_, _,_’: 2 ) =4 2
Uparallel u.uu 4+1<Z+]) 1+ J
UL = U — Gparallel = 31 + 47 — 41 — 2] = —1 + 27.

We can see that Uparaner is indeed parallel to @, and that ¥'; + Uparaner = U. We also check that
Ui =(—1+2))-(2i+))=-2+2=0.

Thus v| L 4 as we wanted.

Example 1.34. Let’s decompose v = 2 — 3;'—1— k onto @ =i+ j — 2k,

Gol . 2-3-2. - oL
_)arae:—» _,_;: ) | —2k) = —1/2—7/2 k
Uparallel = 1+1+4(2+] ) i/2—3/2+

@l:U_Uparallel:2;_3J+g+;/2+5/2_gz5;/2_5‘;/2

And we check that
-7, =(+j]—2k) (51/2—5]/2) =5/2 —5/2 = 0.

One common application of this idea is work in physics. The work done by a force on an
object is the force applied in the direction of motion, times the distance traveled. But if the
force is not in the direction of motion (which happens, for instance, if the object is already

moving when force is applied), then we can use the dot product to calculate the work.

Example 1.35. Suppose a force of 10 Newtons is applied in the i+ j direction to an object
that moves along displacement d=3i— 2;’. What is the work done?

We can decompose the force into the force into the force ﬁparallel in the direction of the
displacement, and the force F| perpendicular to the direction.

But in fact we know that || Foarane|| = || F]| cos 6, so
W = || Fpacanalll ]| = || F]| cos 0| d]| = F - d.
Thus we can use the dot product to compute the work. So we have
W=F-d=15V/2 - 10V2 = 5V2.
This concept will come up a lot when we start studying integrals.
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1.4 The Cross Product

The dot product takes in two vectors and gives us a scalar. But often we want to take two
vectors and get another vector. The cross product answers a very specific question: given
two vectors, find a vector that is perpendicular to both of them.

Since there are two directions “perpendicular to both vectors”, we choose one based on
the right-hand rule, which says that if you point the fingers of your right hand towards u

and curl your fingers towards ¢ then your thumb will point in the direction of @ x .

Definition 1.36. Let @ and ¢ be vectors, and let  be the angle between them. Then the

cross product of @ and v is given by
i x U= (|[al]||7] sin )72

where 7 is a unit vector perpendicular to the plane containing ¥ and o, pointing in the

direction given by the right-hand rule.

Remark 1.37. If @ and ¢ point in the same direction, then there is more than one plane
through both of them and the vector 7 isn’t clearly defined. But in this case sin = sin(0) =0

so @ x ¥ =0, and we don’t need to worry about the direction.

Fact 1.38. let @ and U be vectors. Then

— - —

U X U= (ugV3 — uzve)i + (ugvy — u1v3)j + (u1vy — ugvy k.

We often remember this definition by writing it as a determinant:

1 gk v gk
U X U = det U1 Uy U3| = | U1 Uy Us
V1 U2 U3 V1 V2 U3

Example 1.39. Let @ =i — 3j + k and 7 = —2i+ ] + 2k. Then

i

Ixv=|1 -3 1|=(=6-1)i+(—2—-2)j+ (1 —6)k =—T7i — 4] — 5k.

N = Ty

We can check that this is perpendicular to both @ and v.

We can also interpret the cross product as measuring an area.
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Proposition 1.40. Let u, v be two vectors in a plane, and let 6 be the angle between them.

Then the area of the parallelogram with 4 and U as two sides is ||u x U]|.

Proof. The area of a parallelogram is the length of the base times the height.

I I
4 [ |
K- =======-= ,-'
7/
’
2 [ /', N
] |T]| sin 6 -
//
/7

0 9

| - [ :I |

U
| | | | | | |

|
-2 -1 0 1 2 3 4 5

The length of the base is |||, and the height is ||7||sin @ by basic trigonometry. Thus

the area of the parallelogram is ||7||||i|| sin @ = |7 x ]].

O

Example 1.41. Find the area of the parallelogram with corners at (—1,0), (2,0), (1, 3), (4, 3).

We see that two of the vectors here are 37 and 2i + 3j. Thus we have

i jk
ixT=13 0 0|=0i+0j+(9—0)k =09k
2 3 0

so ||u x ¥]] = 9.

We should also take a moment to look at the algebraic properties of the cross product.
Unlike with the dot product, these are not what you would naively expect from regular

arithmetic.

Proposition 1.42. If u, v, W are vectors and X is a scalar, then:
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1.5 Plane Equations

We can combine the cross product with the dot product to understand planes in R much
better. And these will be important soon: just like lines were important in single-variable
calculus, planes will be important in multivariable calculus.

We can think of a given plane as being the set of all lines thought a given point perpen-

dicular to a given line. We want to rephrase this idea in terms of vectors.

Definition 1.43. If 7 is perpendicular to a plane—that is, perpendicular to any vector

between two points in the plane—then we say that 77 is a normal vector to the plane.

If P = (xo, Yo, 20) is a point on the plane, then the plane consists of all points @ = (z,y, 2)
such that @ is perpendicular to 7. Since

PO = (v — w0)i + (y — yo)j + (= — 20)F,

we see that the plane is the set of points satisfying 7 - ]@ = 0. If we take @ = ai + bf—l— CE,
this is
ﬁ-%:a(x—x0)+b(y—y0)+c(z—zo) = 0.

So every plane will have an equation of this form.

Example 1.44. Find an equation for the plane perpendicular to 7 = i— 2}+ k and passing
through the point (1,5, 2).
The equation is
(x—1)—2(y—5)+(2—2)=0.

Example 1.45. Find a normal vector to the plane given by the equation
or — 2y + 3z = 32.

i = 5i — 2] + 3k.

Find a normal vector to the plane given by
z2=3x—-1)+2(y—5)+2

We rewrite the equation to be 0 = 3(z — 1) + 2(y — 5) — 2 + 2. Then we see that
i =30+2j — k.
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Given a normal vector, we can find the equation of a plane; and given the equation, we
can find a normal vector. But another way to describe a plane is to give three points. (This
is the definition you see in high school geometry!) Can we find the equation of a plane given
three points?

There are two approaches we could take here. The first is to turn this into a vector
problem. If we have two vectors parallel to the plane, the cross product will give you a

normal vector, which is all you need to write down the equation for the plane.

Example 1.46. Find an equation for the plane parallel to the vectors @ = i + j and
7= 5i — j + 3k through the point (5,1,3).

We compute

<.

J

x0T = = (3—=0)i+(0—3)j+ (=1 —5)k = 3i — 3] — 6k.

w O

1
5 —1
We can double-check that this is perpendicular to both our original vectors.

For the equation of the plane we need a point, which we have, and a normal vector, which

is 4 x . Thus the equation for the plane is
0=3(zx—-5)—3y—1)—6(z—3).

Plane equations will be very important to us later, in section [3, and we’ll discuss them

more then.
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