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2 Vector Functions

2.1 Curves in Space

In this section we want to study curves through space. By a curve we mean, essentially,

any shape that is in some sense “one-dimensional”. So a line, a circle, and a curving spiral

through three-dimensional space are all curves.

The essence of a curve is the one-dimensionality. We capture this idea by requiring

position on our curves to be described by one single real number. That is, we can describe

our position on the curve with exactly one coordinate. We say a system of coordinates

for an object is a “parametrization”, because it describes the object with some number of

parameters.

Definition 2.1. We say a function r⃗ : R → Rn is a parametrization of a curve.

If we’re being technical, the image of r⃗, the set {r⃗(t) : t ∈ R} is a curve and the function

r⃗ is a parametrization of that curve.

Sometimes we want to consider the components of the function. We will usually write

r⃗(t) = (x(t), y(t), z(t)) and say that the single-variable functions x(t), y(t), z(t) are the com-

ponents of r⃗.

Example 2.2. Let’s find a parametrization for the curve y = x2.

We see that we can parametrize this by the function r⃗(t) = (t, t2). You’ll notice that this

is basically the original function formula: we have x = t and y = t2 = x2.

Any time we have a curve that is the graph of a single-variable function, we effectively

have a parametrization for free; the entire graph is determined by the input variable, which

acts as our single parameter.

Example 2.3. Let’s parametrize a circle of radius 1. We know it’s the graph of the equation

x2 + y2 = 1, but that doesn’t make it the graph of a function; for a given x value we may

get two different y values, so the trick we just used won’t work. In particular, we could try

something like x(t) = t, y(t) =
√
1− t2 for −1 ≤ t ≤ 1. This sort of works, but only captures

the top half of the circle. We could keep trying to make this idea work, but it basically won’t.

Instead, we take advantage of the fact that circles are fundamentally trigonometric. We

see that r⃗(t) = (cos(t), sin(t)) will give us every point on the circle—in fact, this is the usual

unit circle definition of sin and cos. In particular, we have r⃗(0) = (1, 0) is the rightmost

point of the circle, and as t increases we move counterclockwise around the circle.
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However, this isn’t the only possible parametrization. For instance, we could instead

take s⃗(t) = (sin(t), cos(t)). This will still parametrize the circle, but it starts at s⃗(0) = (0, 1)

which is the top of the circle, and proceeds clockwise.

The graphs of r⃗ and s⃗ for 0 ≤ t ≤ π

In general, choices of parametrization aren’t unique. Often we can make a problem easier

(or harder) by changing our choice of coordinates.

Example 2.4. Let’s consider the curve given by r⃗(t) = (5 cos t, 5 sin t, t). This gives us a

circle of radius 5 if we consider only the x and y coordinates, but now the z coordinate is

increasing. Thus we are spiraling around as our z coordinate increases. This gives us a shape

caled a “helix”.

(You might recall that DNA is described as a “double helix”. This is because it is two

of these helixes spiraling around each other).

The two most common shapes to parametrize are probably circles and lines. We’ve looked

at circles already; now let’s consider lines.
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Example 2.5. Let’s parametrize the line through (1, 3, 5) in the direction of 2⃗i− j⃗ + 3k⃗.

This is simple and straightforward. We get r⃗(t) = (1, 3, 5) + t(2,−1, 3) = (1 + 2t, 3 −
t, 5 + 3t)

In general, a line is described by a point and a direction. Therefore, if we want to

parametrize a line, we can use the equation r⃗(t) = r⃗0 + tv⃗ where r⃗0 is the known point and

v⃗ is the direction.

Example 2.6. Another nice property of parametrizations is that it’s easy to shift them

in space. Let’s parametrize a circle of radius 2 centered at (3, 2), going counterclockwise

starting from the right-hand point.

We know that a circle of radius 1 centered at the origin is r⃗(t) = (cos(t), sin(t)). To

get radius 3, we multiply by 3; then to shift the center, we add (3, 2), leaving us with the

parametrization r⃗(t) = (3 + 2 cos(t), 2 + 2 sin(t)).

If we want to start from left-hand point and go clockwise, we can do a couple things.

One is to flip the circle upside down and start halfway around; this would give r⃗(t) =

(3 + 2 cos(t+ π), 2− 2 sin(t+ π)).

Alternatively, we could start from the parametrization (sin(t), cos(t)), which already goes

clockwise. Then we would get Then r⃗(t) = (3 + 2 sin(t− π/2), 2 + 2 cos(t− π/2)).

We can use parametrizations of curves to find where they intersect surfaces.

Example 2.7. Where does the curve (t, 2t, t + 3) intersect the sphere of radius 9 centered

at the origin?

x2 + y2 + z2 = 81

t2 + 4t2 + t2 + 6t+ 9 = 81

6t2 + 6t = 72

t2 + t− 12 = 0

(t+ 4)(t− 3) = 0

and we have t = 3 and t = −4. Thus our line intersects the sphere at (3, 6, 6) and

(−4,−8,−1).
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We can also see when (and if) two curves intersect.

Example 2.8. We have particles moving along the paths r⃗1(t) = (t, 1 + 2t, 3 − 2t) and

r⃗2 = (−2− 2t, 1− 2t, 1 + t). Do the particles hit each other? Do their paths cross?

For the particles to hit each other, we need them to have the same coordinates at the

same time. We see they share x coordinates when t = −2/3; they share y coordinates when

t = 0 and they share z coordinates when t = 2/3. Thus they never collide.

If we want to see if their paths cross, we just need to test whether they ever pass through

the same point. So we solve the system t1 = −2 − 2t2, 1 + 2t1 = 1 − 2t2, 3 − 2t1 = 1 + t2.

The second equation gives us t2 = −t1. The other equations then are t1 = 2t1 − 2 and

3− 2t1 = 1− t1; we can see that these both give us t1 = 2 (and thus t2 = −2). So the paths

do cross.

Remark 2.9. Here we have three equations in two variables, so it’s very easy for the paths

not to cross. But it’s also quite possible for them to cross in two or more points.

Finally, we can test the relationship lines have to each other.

Example 2.10. r⃗1 = (t− 1, 1 + 2t, 5− t) and r⃗2 = (2 + 2t, 4 + t, 3 + t).
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Not parallel, because vectors/slopes are (1, 2,−1) and (2, 1, 1). Also don’t intersect,

because no solutions. So not parallel but also not intersecting. (“skew”).

2.2 Motion and Calculus

So far we’ve discussed parametric equations as giving position as a function of time, and

talking about the direction and sometimes the speed of motion. As in the single-variable

case, we can make this more precise by the theory of derivatives.

Speed is change in position with respect to time. We can define this pretty easily:

Definition 2.11. The velocity of an object that moves along a path with position r⃗(t) at

time t is

v⃗(t) = r⃗ ′(t) =
dr⃗

dt
= lim

h→0

r⃗(t+ h)− r⃗(t)

h
.

This definition by itself is a bit hard to work with. However, we can make it much simpler

by realizing that the x, y, and z coordinates all change independently, so we can consider

them independently. (This is implicitly because derivatives are always linear, so we can write

the derivative of a sum as the sum of the derivatives).

Proposition 2.12. Let r⃗ : R2 → R3 be a differentiable function. Then

r⃗ ′(t) = (x′(t), y′(t), z′(t)).

Proof.

r⃗ ′(t) = lim
h→0

r⃗(t+ h)− r⃗(t)

h

= lim
h→0

x(t+ h)⃗i+ y(t+ h)⃗j + z(t+ h)k⃗ − x(t)⃗i− y(t)⃗j − z(t)k⃗

h

= lim
h→0

x(t+ h)− x(t)

h
i⃗
y(t+ h)− y(t)

h
j⃗ +

z(t+ h)− z(t)

h
k⃗

= x′(t)⃗i+ y′(t)⃗j + z′(t)k⃗.
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Example 2.13. Consider the circle parametrized by (cos(t), sin(t)). Then the derivative is

r⃗ ′(t) = (− sin(t), cos(t)).

If we want to find the tangent vector at the point (1, 0), we compute the derivative and

plug in t = 0, so we get r⃗ ′(0) = (0, 1) as your vector, and the tangent line is (1, 0 + t).

Now suppose want the tangent line at (
√
2/2,

√
2/2). This occurs at time t = π/4 and

so we compute r⃗ ′(π/4) = (−
√
2/2,

√
2/2). Thus the tangent line is

√
2/2(1− t, 1 + t).

Example 2.14. Now let’s consider the curve given by r⃗(t) = (t2, t3, 2t). We compute the

derivative is r⃗ ′(t) = 2t⃗i+ 3t2j⃗ + 2⃗k.

If we want to find the tangent line at t = 2, we compute r⃗ ′(2) = (4, 12, 2), and thus we

get an equation for the line r⃗(2) + tr⃗ ′(2) = (4, 8, 4) + t(4, 12, 2).

After taking the first derivative, we can also take the second (and further) derivatives.

As in the single variable case, if the function gives position, and the derivative gives velocity,

then the second derivative gives acceleration.

Definition 2.15. The acceleration of an object that moves along a path with position r⃗(t)

at time t is

a⃗(t) = v⃗ ′(t) = r⃗ ′′(t) =
d2r⃗

dt2
= lim

h→0

r⃗ ′(t+ h)− r⃗ ′(t)

h
.

As you’d expect, we can compute the acceleration just by taking the componentwise

second derivatives: we have

a⃗(t) = v⃗ ′(t) = r⃗ ′′(t) = (x′′(t), y′′(t), z′′(t)).

Example 2.16. Consider again the circle parametrized by r⃗(t) = (cos(t), sin(t)). Then we

know that r⃗ ′(t) = (− sin(t), cos(t)), and thus the second derivative is r⃗ ′′(t) = (− cos(t),− sin(t)).

Then we compute that r⃗ ′′(0) = (−1, 0) and r⃗ ′′(π/4) = (−
√
2/2,−

√
2/2).
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We notice that the acceleration arrows in a circle always point inwards! This is because

the motion is at a constant speed, so we can’t speed up in the direction of our velocity.

Example 2.17. Suppose we have the function r⃗(t) = (2, 6, 0) + (t3 + t)(4, 3, 1). Then we

can compute the velocity to be r⃗ ′(t) = (3t2 + 1)(4, 3, 1), and the acceleration is given by

r⃗ ′′(t) = 6t(4, 3, 1).

Finally, we can integrate these functions. Suppose we have a function v⃗(t) which gives

the velocity of a particle as a function of time; we’d like to recover the position. Fortunately

we can do this coordinate-wise, just like everything else.

Definition 2.18. Let v⃗ : R → R3 be a vector-valued function, with v⃗(t) = ⟨x(t), y(t), z(t)⟩.
We can define the indefinite and definite integrals of v⃗ by∫

v⃗(t) dt =

〈∫
x(t) dt,

∫
y(t) dt,

∫
z(t) dt

〉
∫ b

a

v⃗(t) dt =

(∫ b

a

x(t) dt,

∫ b

a

y(t) dt,

∫ b

a

z(t) dt

)

Example 2.19. Suppose a particle moves with velocity v⃗(t) = (3t + 2)⃗i + t2j⃗ − (t − 1)k⃗.

What is the displacement between t = −2 and t = 2?

∫ 2

−2

(3t+ 2)⃗i+ t2j⃗ − (t− 1)k⃗ dt = (⃗3t2/2 + 2t)⃗i+ t3/3⃗j − (t2/2− t)k⃗
∣∣∣2
−2

=
(
10⃗i+ 8/3⃗j − 0k⃗

)
−
(
2⃗i− 8/3⃗j − 4k⃗

)
= 8⃗i+ 4k⃗.

So between t = −2 and t = 2 the particle moves 8 units in the i⃗ direction and 4 in the k⃗

direction.

http://jaydaigle.net/teaching/courses/2025-summer-2233-20/ 23

http://jaydaigle.net/teaching/courses/2025-summer-2233-20/

	Vector Functions
	Curves in Space
	Motion and Calculus


