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3 Partial Derivatives

In this section, we want to shift our attention to multivariable functions : functions which

take in multiple inputs, but have a single number output. (We can write f : R2 → R or

f : R3 → R.) These are more complex than the vector-valued functions we studied in section

2

Now that we have a basic understanding of multivariable functions, we want to apply

calculus to them. Our goal in this section is to define and understand the derivative, which

measures the rate at which a function is changing.

3.1 Graphing multivariable functions

To describe and understand single-variable functions, we would draw a graph, with one

dimension representing the input and one dimension representing the output. We would like

to do the same thing for multivariable functions, but the situation is a bit more difficult

because it’s much harder to draw three-dimensional pictures. (And all but impossible to

draw four- or six-dimensional pictures).

3.1.1 Graphing functions of two variables as surfaces

Recall that when we graphed a single-variable function f , we took all the points (x, y) such

that y = f(x). Similarly, we can define:

Definition 3.1. Let f : R2 → R be a function of two variables. Then the graph of f is the

set {(x, y, z) : z = f(x, y)} of all points with z = f(x, y).

The graph of a two-variable function will generally look like a curved two-dimensional

surface in three-dimensional space.

A graph of a two-variable function will still have to pass the vertical line test: a vertical

line given by x = a, y = b will intersect the surface in at most one point. This is because a

given (x, y) input has only one output.
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Figure 3.1: Graphs of the functions x2 + y2, x+ y, and
√

9− x2 − y2

3.1.2 Transformations of two-variable functions

If you already know the graph of one function, you can often figure out what the graphs of

related functions must look like.

• The graph of f(x, y)+ c is the graph of f(x, y) shifted up (along the z-axis) by c units.

• The graph of f(x − a, y − b) is the same as the graph of f(x, y) but shifted a units

along the x axis and b units along the y axis. You can think of this as moving the

center of the graph from (0, 0) to (a, b).

• The graph of f(−x, y) is the graph of f(x, y) reflected across the yz plane, inverting

the x axis.

• The graph of f(x,−y) is the graph of f(x, y) reflected across the xz plane, inverting

the y axis.

• The graph of −f(x, y) is the graph of f(x, y) reflected across the xy plane, inverting

the z axis and drawing the graph “upside down”.

Example 3.2. Let’s consider the function f(x, y) = x2+ y2 that we saw in figure 3.1. Then

we can look at the following ways of shifting the function in figure 3.2:

Similarly, we can take the function g(x, y) = x3 + 5y and look at the following graphs in

figure 3.3:

3.1.3 Graphing two-variable functions with cross-sections

We still don’t have a good way to figure out what the graph of a two-variable function looks

like if we don’t already know. But the last section gives us an idea: look at each variable

individually.
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Figure 3.2: The graphs of f(x, y) + 5, f(x− 1, y), and f(x, y + 2)

Definition 3.3. If f(x, y) is a function of two variables, then we can get a function of

one-variable by fixing x = c and considering the function f(c, y). This function is called

a cross-section of f with x fixed. The graph of this cross-section is the curve given by

intersecting the plane x = c with the graph of f(x, y).

Similarly, the function of one variable given by f(x, c) is a cross-section of f with y fixed.

The graph of this function is the curve given by intersecting the plane y = c with the graph

of f(x, y).

Each cross-section is a single-variable function, and thus straightforward to graph. By

graphing a number of cross sections we can get a good idea what the graph of the whole

function looks like.

Example 3.4. Let f(x, y) = x2 − y2. First we’ll take cross-sections holding y constant. We

can plot these below in figure 3.4:

Thus we see that the cross-sections holding y constant are parabolas, which start lower

and lower the further away we get from the y = 0 plane.

We can also take cross-sections holding x constant. We get the similar graphs in figure

3.5:

These show us that holding x constant, we get upside-down parabolas, with the peak

being higher and higher the farther we are from the plane x = 0.

Putting this together, we can assemble a picture of the real function:

Example 3.5. Let g(x, y) = x3 + sin(y). We can again take cross sections, holding x and y

constant in turn:

From the left, we see that holding x constant, we have a gentle sine wave along the y

axis. From the right, we see that holding y constant, x is increasing in a cubic. Putting this

information together, we can get a graph for the whole surface:
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Figure 3.3: The graphs of g(x, y), g(−x, y), g(x,−y), and −g(x, y)

3.1.4 Graphing two-variable functions with level sets

Sometimes we want to approach the same question from a different direction (literally!).

Instead of holding x constant or y constant, we will hold z constant.

Definition 3.6. If f(x, y) is a function of two variables, then the level set of f at level c is

the set of all points (x, y) such that f(x, y) = c.

A contour diagram for f is a graph with several level sets for f at different levels.

Importantly, the level set is not a function, and doesn’t need to pass any vertical line

tests or anything similar.

Contour diagrams show up commonly in topographical maps.

Example 3.7. The contour plots in figure 3.9 look very similar, but the contour heights

make them very different. We can see the corresponding graphs in figure 3.10.
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Figure 3.4: Cross sections of x2 − y2 holding y constant

Figure 3.5: Cross sections of x2 − y2 holding x constant

Figure 3.6: The graph of x2 − y2

Figure 3.7: Cross sections of x3 + sin(y), holding x constant on the left and y constant on

the right
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Figure 3.8: The graph of x3 + sin(y)

Figure 3.9: Contour diagrams for f(x, y) = 25− x2 − y2 and g(x, y) =
√

x2 + y2

Figure 3.10: The graphs of f(x, y) = 25− x2 − y2 and g(x, y) =
√

x2 + y2
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Example 3.8. We can also draw contour plots for some of our earlier functions. The contour

plot for the saddle from example 3.4 and the sine function from example 3.5 appear in figure

3.11.

Figure 3.11: Contour plots for x2 − y2 and x3 + sin(y)

3.1.5 Graphing three-variable functions with level surfaces

We’ve now established a few approaches to graphically representing functions of two vari-

ables. What can we do with functions of three variables?

Simply graphing the entire function isn’t really a plausible solution. As a mathematical

object, the graph of a three-variable function as a subset of R4 is perfectly well defined;

but it’s almost impossible to draw or visualize these graphs, so they don’t help us with our

problem of visually representing three-variable functions.

In contrast, cross-sections and level sets are both useful tools. They are much tricker

to implement here, because the cross-sections and level sets will themselves be two-variable

functions, and thus give us two-dimensional surfaces inside threespace.

Definition 3.9. If f(x, y, z) is a function of two variables, then the level set of f at level c

is the set of all points (x, y, z) such that f(x, y, z) = c.

It’s much harder to draw a contour diagram in this case, but we can sort of make an

attempt still.

Example 3.10. Find the level surfaces of f(x, y, z) = x2 + y2 + z2.

There are no surfaces for c < 0, and for c = 0 the level surface is a point. For larger c we

get a sphere of radius
√
c. Thus the level sets for c = 1, 4, 9 are shown in figure 3.12.

Example 3.11. We can see the level surfaces of g(x, y, z) = x2 + y2 and h(x, y, z) = x+ z,

at the levels 1, 2, 3, 4, in figure 3.13. Thbe level surfaces for g are cylinders of radius
√
c, and

the level surfaces of h are all parallel planes.
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Figure 3.12: Level sets for x2 + y2 + z2 at the levels c = 1, 4, 9

Example 3.12. We’d like to understand the level surfaces of f(x, y, z) = x2+y2−z2. These

will look different depending on the level of c.

It’s probably easiest to think about these level surfaces by thinking about their own

contour plots as z varies. If c = 0, then our equation is x2 + y2 = z2. We see that for each z

we get a circle of radius z in the plane perpendicular to the z-axis, and in fact at z = 0 we

have a single point. Stacking these all together gives us two cones.

If c is positive, then we have the equation x2 + y2 = z2 + c. Then we see that for each z

we get a circle of radius
√
z2 + c > z, and the radius will always be positive. If instead we

take, say, the x = 0 cross-section, we get y2 − z2 = c, which is a hyperbola. The resulting

surface is a hyperboloid of one sheet.

Finally, if c is negative, we get x2+y2 = z2+c, where there is no solution when z2+c < 0.

Thus we’ll have a stack of increasing radius circles, but it will start at z = ±
√
c. This surface

is a hyperboloid of two sheets.

Remark 3.13. We’ve used surfaces to represent the full graph of two-variable functions, and

also to represent the level surfaces of three-variable functions. These surfaces are at least

somewhat related, and in fact if we have the graph of a function f(x, y), then it is also the

level surface at zero of the function f(x, y)− z.

Thus every graph of a two-variable function is also a level surface of some three-variable

function. The converse, however, is not true; many of the level surfaces we have seen cannot

be the graphs of two-variable functions, since they fail the vertical line test.
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Figure 3.13: The level surfaces of g and h at the levels 1, 2, 3, 4

Figure 3.14: Level surfaces of x2 + y2 − z2 at the levels 0, 2,−2

3.2 Limits and Continuity

In calculus 1, we learned about limits, which tell us in some sense the value a function

“should” have at a point—which may or may not be the value it does have, and it may not

have a value at all. We can extend the same idea to multivariable functions.

Definition 3.14. If f : R2 → R is a function, then it has a limit at the point (a, b) of L,

and we write

lim
(x,y)→(a,b)

f(x, y) = L,

if we can make f(x, y) as close as we want to L, purely by requiring the distance from (x, y)

to (a, b) to be small enough (but not zero).

Remark 3.15. Formally we’d write something like: for every ϵ > 0, there is a δ > 0 such that
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if
√

(x− a)2 + (y − b)2 < δ then |f(x, y)−L| < ϵ. We won’t be drilling down into that level

of rigor in this class, though. If you want to see more of this kind of thing, take Math 4239.

Example 3.16. When the function doesn’t do anything weird, limits won’t do anything

surprising.

lim(x,y)→(3,4) x
2 + y2 = 32 + 42 = 25

lim(x,y)→(1,−1) x
2 − y2 = 12 − (−1)2 = 0

Definition 3.17. A function f is continuous at a point (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b).

A function is continuous on a region R if it is continuous at each point in R.

If f is not continuous at a point (a, b) then it is discontinuous there.

Fact 3.18. A function defined entirely from algebraic, trigonometric, and exponential func-

tions is continuous anywhere it is defined.

(No function is ever continuous anywhere it is not defined).

Example 3.19. Let f(x, y) = x2y
x2+y2

. This function is continuous everywhere it is defined,

which is everywhere except (0, 0). So it’s easy to compute, for instance, that lim(x,y)→(1,1) f(x, y) =
12·1

12+12
= 1

2
.

Now let’s consider lim(x,y)→(0,0) f(x, y). We can’t just plug (0, 0) in here, so we need to

do something else.

First, we can look at the graph and contour diagram of f .

Figure 3.15: The graph and contour plot for f(x, y) = x2y
x2+y2
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We see that the function seems to smoothly approach 0 as (x, y) approaches (0, 0), so we

suspect the limit is in fact 0.

Informally, we see that the denominator “goes to zero” “twice”, while the numerator goes

to zero “three times”. Thus we would expect the limit to be zero.

If we want to be more rigorous, we calculate the distance between f(x, y) and the guessed

limit 0. Then we have

|f(x, y)− L| =
∣∣∣∣ x2y

x2 + y2
− 0

∣∣∣∣ = ∣∣∣∣ x2

x2 + y2

∣∣∣∣ |y| ≤ |y| ≤
√

x2 + y2.

Thus the distance between f(x, y) and 0 is less than the distance between (x, y) and (0, 0).

Clearly by making (x, y) closer to (0, 0) we can make f(x, y) as close as we want to 0.

Since the limit exists, we can extend this function to be continuous at the origin: the

function

ff (x, y) =

{
x2y

x2+y2
(x, y) ̸= (0, 0)

0 (x, y) = (0, 0)

is continuous at (0, 0).

Example 3.20. Now let’s consider the similar function g(x, y) = x2

x2+y2
. Like in example

3.19, this is continuous everywhere it is defined, which is everywhere except at (0, 0).

But at (0, 0) things are tricker. The graph has a noticeable spike, and the contour plot

looks terrible near (0, 0), with all the contours converging onto that single point.

Figure 3.16: The graph and contour plot for g(x, y) = x2

x2+y2

The informal algebraic argument we gave before doesn’t help: both the top and the

bottom go to zero “twice”. So this doesn’t help us find any limit.

Formally, we want to show that no limit exists, so we want to show that you can be as

close to (0, 0) as you want and still get very different answers for g(x, y).
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So first let’s consider points that look like (a, 0). Then g(a, 0) = a2

a2+02
= 1. Since a can

be as small as we want, this tells us that we can be as close to the origin as we want and

have g(x, y) = 1.

But this doesn’t mean the limit is 1! As an example, take points that look like (0, b).

Then g(0, b) = 02

02+b2
= 0. Since b can be anything, this also tells us that we can be as close

to the origin as we want, and have g(x, y) = 0. Thus no limit exists.

In fact, by approaching from the right direction, we can get any value between 0 and 1.

And we can see this behavior both in the graph (which has an abrupt spike or dip near the

origin), and in the contour plot (which shows us different directions of approach, and the

values they will give).

We just saw that we can show that limits don’t exist by approaching the same point from

different directions. This should remind you of the one-variable case, where we might check

the right- and left-sided limits and show they differ.

But the multivariable case is considerably more complex, because there are infinitely

many directions. In fact it’s more complicated than that: there are functions that have a

consistent limit as long as you approach along any straight-line path, but that break down

when you approach along the right curve. We’ll see an example in recitation.

3.3 The Partial Derivative

We’ve already been talking about how a function changes when you change one of the

input variables. This is exactly the single-variable calculus derivative and can be defined

accordingly.

Definition 3.21. Let f be a function of two variables. Then we define the partial derivatives

at the point (a, b) by

∂f

∂x
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)

h
= fx(a, b)

∂f

∂y
= lim

h→0

f(a, b+ h)− f(a, b)

h
= fy(a, b).

If we allow (a, b) to vary, we get functions fx(x, y) and fy(x, y).

We will sometimes write ∂z
∂x

and ∂z
∂y
. If we want to represent these derivatives evaluated

at a point, we will write ∂z
∂x

∣∣
(a,b)

and ∂z
∂y

∣∣∣
(a,b)

.

Remark 3.22. This isn’t just analogous to the single-variable calculus derivative; it is exactly

identical. If we have a function f : R2 → R and we hold the second variable fixed at y = b,
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then we get a single-variable function defined by fb(x) = f(x, b). Then fx(a, b) = f ′
b(a) is

just the single-variable derivative of this single-variable function.

The interesting part here is not that we can define the partial derivatives, which are

basically old news. The interesting thing is that we can get the answers to genuinely multi-

varaible questions out of these essentially single-variable tools.

Example 3.23. Suppose a differentiable function f(x, y) has the following values:

y \ x 0 1 2 3 4 5

0 120 135 155 160 160 150

1 125 128 135 160 175 160

2 100 110 120 145 190 170

3 85 90 110 135 155 180

Then we can estimate the partial derivatives off the chart. For instance, we can estimate

that fx(3, 1) is about 20: since f(4, 1) − f(3, 1) = 15 and f(3, 1) − f(2, 1) = 25. Similarly,

we can estimate fy(3, 1) ≈ −7.5 since f(3, 1)− f(3, 0) = 0 and f(3, 2)− f(3, 1) = −15.

One way to understand partial derivatives is to think about the units of the function.

For instance, in your homework (problem 12.3.26) you looked at a function H(x, t) that took

position and time as inputs, and had temperature as an output. Then Hx(x, t) has units

of degrees per meter—how quickly temperature changes when you move a foot away. And

Ht(x, t) has units of degrees per minute—how quickly temperature changes over time.

Partial derivatives are easy and quite boring to calculate. Since we’re looking at f(x, y)

as a function of a single variable, while holding the other constant, we can pretend it’s simply

a single-variable function, and treat the other variable like a constant.

Example 3.24. Let f(x, y) = x2 + y2. Then fx(x, y) = 2x and fy(x, y) = 2y.

Let g(x, y) = sin(xy). Then gx(x, y) = cos(xy) · y and gy(x, y) = cos(xy) · x.
Let h(x, y) = x2

y3−3y
. Then hx(x, y) =

2x
y3−3y

and hy(x, y) = −x2(3y2−3)
(y3−3y)2

.

We can graphically understand partial derivatives by thinking about the cross-section.

Example 3.25. Let f(x, y) = 16− x2 − y2. Then fx(x, y) = −2x. Thus fx(2, 0) = −4, and

the cross-section at 0 is f(x, 0) = 16− x2 and has tangent line z − 12 = −4(x− 2).

Similarly, if we look at the point (2, 2), we see that the cross-section is f(x, 2) = 12− x2

and the derivative is fx(2, 2) = −4, so the tangent line is z − 8 = −4(x− 2).

Notice that the slopes of both lines are the same, since here fx(x, y) doesn’t depend on

y.
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In section 3.1.4 we talked about reading contour diagrams and thinking about in which

directions the function was changing. We can interpret this in terms of partial derivatives.

Example 3.26. Recall the contour diagrams we saw in figure 3.9:

We can ask questions like fx(1, 0) and gx(1, 0). Looking at the graph, we see that

fx(1, 0) ≈ −4 since it changes from 24 to 20 between (1, 0) and (2, 0). We can see that

fy(1, 0) is slightly smaller, since going from (1, 0) to (1, 1) doesn’t quite get us from 24 to 20.

Similarly, gx(−2, 0) is about −1, since g(−3, 0) = 3, g(−2, 0) = 2, and g(−1, 0) = 1.

gy(−2, 0) is positive but less than 1.

We can also define the partial derivatives in three (or more) dimensions; the only thing

that changes is that the picture becomes more difficult to draw.

Example 3.27. Let f(x, y, z) = x2 + xyz + y/z. Then we have

fx(x, y, z) = 2x+ yz

fy(x, y, z) = zy + 1/z

fz(x, y, z) = xy − y/z2.
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3.4 Local Linear Approximation

In many ways, the most important application of the derivative is the ability to approximate

a function with a linear function. The basic idea is the same as the idea from single-variable

calculus. If you zoom in enough on a 1-variable function, it will loook mostly like a line; if

you zoom in on a 2-variable function, it will look like a plane.

Definition 3.28. A 2-variable linear function is given by a formula f(x, y) = z0 +m(x −
x0) + n(y − y0). We might say this function has slope m in the x direction and slope n in

the y direction. We could also write f(x, y) = c+mx+ ny, but this usually isn’t as helpful.

A 3-variable linear function is given by g(x, y, z) = w0+m(x−x0)+n(y−y0)+ ℓ(z−z0).

Remark 3.29. If you have taken linear algebra, you will notice that this is somewhat dif-

ferent from the definition of a linear function given there. A linear function in the linear

algebra sense must also pass through the origin, and thus the equation can always be written

f(x, y) = mx+ ny.

Thus technically we have defined an “affine transformation” rather than a linear trans-

formation. But under the same technicality, most lines in single-variable calculus are not

linear functions. We’ll mostly ignore that language here.

The important thing about linear functions is that changes in x and changes in y change

the output completely independently. This makes everything about the functions very sim-

ple.

Figure 3.17: Contour diagrams for f(x, y) = 2− x− 2y and g(x, y) = 3− (x+ 1)/2
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The graph of a linear function will look like a plane. We have

z = z0 +m(x− x0) + n(y − y0)

0 = −(z − z0) +m(x− x0) + n(y − y0)

so this plane goes through the point (x0, y0, z0) and has normal vector m⃗i+ n⃗j − k⃗.

Definition 3.30 (Informal). Roughly speaking, the tangent plane to a surface at the point

(x, y, z) is a plane that passes through the point (x, y, z), and touches the surface only at

that point.

Proposition 3.31. If f(x, y) is differentiable at the point (a, b), then the equation of the

tangent plane to z = f(x, y) at the point (a, b) is

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

From the equation form, we see that this plane must pass through the point (a, b, f(a, b)).

Further, the slope in the x direction is fx(a, b), which is the rate at which f is changing when

you change x. Similarly, fy(a, b) is the slope in the y direction.

Example 3.32. Let’s find the tangent plane to the function f(x, y) = −x2 − 4y2 at the

point (2, 1,−8).

We compute

fx(x, y) = −2x fx(2, 1) = −4

fy(x, y) = −8y fy(2, 1) = −8.

Since f(2, 1) = −8, the equation for the tangent plane is

z = −8− 4(x− 2)− 8(y − 1)
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Example 3.33. Let’s find the tangent plane to the function g(x, y) = yex/y at the point

(1, 1).

We compute

gx(x, y) = yex/y
1

y
= ex/y

gx(1, 1) = e

gy(x, y) = ex/y + yex/y
−x

y2
= ex/y − x

y
ex/y

gy(1, 1) = e− e = 0.

Since g(1, 1) = e, the equation for the tangent plane is

z = e+ e(x− 1).

As with linear functions in single-variable calculus, we can use the tangent plane to

approximate the values of a funtion.

Example 3.34. Let’s estimate g(1.1, 1).

We know that

g(x, y) ≈ e+ e(x− 1)

g(1.1, 1) ≈ e+ e(1.1− 1) = e+ .1e = 1.1e.

Using Mathematica, we compute that g(1.1, 1) ≈ 3.00417, and 1.1e ≈ 2.99011, so this is

pretty good.

Definition 3.35. The tangent plane approximation to a function f(x, y) near the point (a, b)

is given by

f(x, y) ≈ f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).
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It’s hard to graph, but we can do the same thing in three (or more) dimensions. The

linear approximation to a function f(x, y, z) near the point (a, b, c) is given by

f(x, y, z) ≈ f(a, b, c) + fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c).

Sometimes you’ll see these ideas described differently, in terms of the “differential”.

Definition 3.36. The differential df of a function f at a point (a, b) is a linear function in

the variables dx and dy, given by

df = fx(a, b)dx+ fy(a, b)dy.

We will sometimes write df = fxdx+ fydy.

We can interpret the differential as being, for each point (a, b), a linear function that

takes in a change in the x and y coordinates and outputs a change in the z coordinate. Thus

f(a+ dx, b+ dy) ≈ f(a, b) + df(dx, dy) = f(a, b) + fx(a, b)dx+ fy(a, b)dy.

3.5 Gradients and directional derivatives

In the previous sections we used the partial derivatives to tell us how f(x, y) will change

as we change the input variables x and y. But that’s unnecessarily rigid; there’s nothing

special about only changing just the x input, or just the y input. We’d like to generalize

this further, and see what happens when we change the input in an arbitrary direction.

Definition 3.37. Let u⃗ = u1⃗i+ u2j⃗ + u3k⃗ be a unit vector. Then we define the directional

derivative of f in the direction u⃗ at the point (a, b, c) to be

fu⃗(a, b, c) = lim
h→0

f(a+ hu1, b+ hu2, c+ hu3)− f(a, b)

h

to be the rate of change of f in the direction u⃗.

If v⃗ is a non-zero non-unit vector, then we say the directional derivative in the direction

of v⃗ is the directional derivative in the direction of v⃗
∥v⃗∥ .

Conceptually, here we’re seeing what happens if we change the input in the direction u⃗

with a change of size h, and then letting the size of the change go to zero.

Remark 3.38. If u⃗ = i⃗, then fu⃗ = fx. Similarly fj⃗ = fy and fk⃗ = fz.

Example 3.39. Let’s look at some of our contour plot from section 3.3 again.
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We can compute these directional derivatives directly from the definition.

Example 3.40. Let f(x) = x2 − y2 (the function whose contour plot is in example 3.39).

Let’s compute the directional derivative in the i⃗+ j⃗ direction at the point (1,−3). Our unit

vector in that direction is u⃗ = 1√
2
i⃗+ 1√

2
j⃗, and we compute

fu⃗(1,−3) = lim
h→0

f(1 + h/
√
2,−3 + h/

√
2)− f(1,−3)

h

= lim
h→0

(1 + h/
√
2)2 − (−3 + h/

√
2)2 − (12 − (−3)2)

h

= lim
h→0

1 +
√
2h+ h2/2− (9− 3

√
2h+ h2/2)− (−8)

h

= lim
h→0

4
√
2h

h
= lim

h→0
4
√
2 = 4

√
2.

Computing the directional derivative directly from the limit definition is completely pos-

sible, but it’s tedious. Just as we found easy ways to compute the single-variable derivative,

we would like easy ways to compute the directional derivative of a multivariable function.

Fortunately, the partial derivatives give us enough information to do this. By local

linearity, we see that

f(a+ hu1, b+ hu2) ≈ f(a, b) + hu1fx(a, b) + hu2fy(a, b)

f(a+ hu1, b+ hu2)− f(a, b)

h
≈ hu1fx(a, b) + hu2fy(a, b)

h
= u1fx(a, b) + u2fy(a, b).

Since this approximation should get increasingly good as h gets small, we conclude that

fu⃗(a, b) = lim
h→0

f(a+ hu1, b+ hu2)− f(a, b)

h
= u1fx(a, b) + u2fy(a, b).

Example 3.41. Let’s work out our previous example this way. If f(x, y) = x2 − y2, we see

that fx(x, y) = 2x and fy(x, y) = −2y. Thus fx(1,−3) = 2 and fy(1,−3) = 6. Then we have

fu⃗(1,−3) =
1√
2
· 2 + 1√

2
· 6 =

8√
2
= 4

√
2

as we got before.

In this computation, you may notice that we have something that looks like a dot product

of u⃗ with a vector containing the partial derivatives. This leads us to define an object that

we will use in almost all of our derivative calculations in the future.
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Definition 3.42. If f(x, y) is differentiable at (a, b), then the gradient vector of f at (a, b)

is

grad f(a, b) = ∇f(a, b) = fx(a, b)⃗i+ fy(a, b)⃗j.

Similarly, if f(x, y, z) is differentiable at (a, b, c), then the gradient vector is

grad f(a, b, c) = ∇f(a, b, c) = fx(a, b, c)⃗i+ fy(a, b, c)⃗j + fz(a, b, c)k⃗.

Remark 3.43. We sometimes say that

∇ =
∂

∂x
i⃗+

∂

∂y
j⃗ +

∂

∂z
k⃗.

This is just another way of writing the same definition, but is really notationally convenient.

Proposition 3.44. If f is differentiable at (a, b, c) and u⃗ is a unit vector, then

fu⃗(a, b, c) = ∇f(a, b, c) · u⃗.

Example 3.45. Let f(x, y) = xy − sin(x). Then the gradient is

∇f(x, y) = (y − cos(x))⃗i+ x⃗j

and the gradient at the point (π, 1) is

∇f(π, 1) = 2⃗i+ πj⃗.

The directional derivative in the direction 3/5⃗i+ 4/5⃗j is

(2⃗i+ πj⃗) · (3/5⃗i+ 4/5⃗j) =
6 + 4π

5
.

The gradient tells us basically everything we want to know about the derivative of the

function f ; in many ways it “is” the derivative. (From a linear algebra perspective, ∇f is

the matrix corresponding to the local linearization of f).

Proposition 3.46. If f is differentiable at (a, b, c) and ∇f(a, b, c) ̸= 0⃗, then:

• ∇f(a, b, c) is in the direction of maximum increase for f .

• ∥∇f(a, b, c)∥ is the maximum rate of increase of f in any direction.

• ∇f(a, b, c) is perpendicular to the level sets of f .
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Proof. The rate of increase in the direction of a unit vector u⃗ is

∇f(a, b, c)̇⃗u = ∥∇f(a, b, c)∥ · ∥u⃗∥ cos θ = ∥∇f(a, b, c)∥ cos θ.

This is maximized when θ = 0, which is when ∇f(a, b, c) and u⃗ point in the same direction;

the maximum value is ∥∇f(a, b, c)∥.
∇f(a, b, c) is the normal vector to the tangent plane (or line) at (a, b, c), and thus is

perpendicular to the tangent plane. Thus it is perpendicular to the level set.

Example 3.47. We can look at the contour diagram and the graph for the function f(x, y) =

xy − sin(x) from example 3.45.

We see in the contour diagram that the gradient vector is perpendicular to the contour, and

is in the direction of greatest increase. We can see the latter again in the three-dimensional

graph—but this is much harder to read and see what’s happening.

Example 3.48. Let’s do a three-variable example next. Let g(x, y, z) = xy + z. Then

∇g(x, y, z) = y⃗i+ x⃗j + 1k⃗.

At the point (−1, 0, 1), we have ∇g(x, y, z) = −j⃗+ k⃗. Thus the direction of greatest increase

is −j⃗ + k⃗ and the magnitude of the increase in that direction is
√
2.
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What if we want the directional derivative in the direction of, say v⃗ = 2⃗i + k⃗? Then we

have

u⃗ =
v⃗

∥v⃗∥
=

2√
5
i⃗+

1√
5
k⃗

fu⃗(−1, 0, 1) = (−j⃗ + k⃗) · u⃗ = 0 · 2√
5
− 1 · 0 + 1√

5
=

1√
5
.

3.6 The Chain Rule

We’d like an analogue of the single-variable chain rule for multivariable functions. In the

single-variable case, we ask how much f changes when you change x, and then how much g

changes when you change f(x), and multiply those together: d
dx
g(f(x)) = dg

dx
(f(x)) · df

dx
(x).

The intuition in the multivariable case is basically the same; we track what effect changing

each input has, and multiply them through. The expressions are more complicated pretty

purely because there are more levers we can push on to change things.

To build some intuition, we’ll start with the case where our composite isn’t really a

multivariable function: f depends on two variables, but each of those variables depends only

on some variable t. This corresponds to, say, the force acting on a particle over time, when

the force depends on position in space and the position in space depends on time.

Proposition 3.49 (Parametrized Chain Rule). If f, g, h are differentiable, and x = g(t) and

y = h(t), then
df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

Conceptually, what’s happening here is that we look at every way that f can change, and

then see how t affects each of those factors; then we add all the separate changes together.
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(This is making some implicit assumption that things are almost linear—but every time we

use the derivative, we’re making that assumption).

Sketch. We know that ∆f ≈ ∂f
∂x

·∆x+ ∂f
∂y

·∆y. But further we know that ∆x ≈ dx
dt
·∆t and

∆y ≈ dy
dt

·∆t. Putting this together gives us

∆f ≈ ∂f

∂x

dx

dt
∆t+

∂f

∂y

dy

dt
∆t

∆f

∆t
≈ ∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

and taking the limit as t goes to zero gives us what we want.

Example 3.50. Suppose z = y cos(x), where x = t2 and y = t3. Then

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

= (−y sin(x)) · 2t+ cos(y) · 3t2

= −t3 sin(t2) · 2t+ cos(t3) · 3t2.

We can generalize this sort of chain rule behavior to chaining together functions of many

variables. In general, we have
∂z

∂t
=

∑
xi

∂z

∂xi

· ∂xi

∂t
.

That is, for each variable that z depends on, we multiply together the way z depends on the

variable and the way the variable depends on t, and then add these all together to get the

total change.

Example 3.51. Let f(x, y) = x2y where x = 4u+ v and y = u2 − v2. Compute ∂f
∂u

and ∂f
∂v
.

∂f

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
= 2xy · 4 + x2 · 2u

= 2(4u+ v)(u2 − v2)4 + (4u+ v)22u

∂f

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
= 2xy · 1 + x2(−2v)

= 2(4u+ v)(u2 − v2) + (4u+ v)2(−2v).

Example 3.52. Suppose we have a function f that can be expressed as a function of x and

y, or of u and v, where x = u+ v and y = u− v. (This is called a change of basis). We can

express the partial derivatives in terms of each other.
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We have

∂f

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
=

∂f

∂x
· 1 + ∂f

∂y
· 1

=
∂f

∂x
+

∂f

∂y
∂f

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
=

∂f

∂x
· 1 + ∂f

∂y
· (−1)

=
∂f

∂x
− ∂f

∂y
.

If we want to go the opposite way, and express ∂f
∂x

and ∂f
∂y

in terms of ∂f
∂u

and ∂f
∂v
, then we

have two options. One is to observe that u = x+y
2

and v = x−y
2
, and then use the chain rule

again:

∂f

∂x
=

∂f

∂u

∂u

∂x
+

∂f

∂v

∂v

∂x
=

1

2

∂f

∂u
+

1

2

∂f

∂v
∂f

∂y
=

∂f

∂u

∂u

∂y
+

∂f

∂v

∂v

∂y
=

1

2

∂f

∂u
− 1

2

∂f

∂v
.

Alternatively, we could have taken the expressions we already had and rearranged them.

We knew that

∂f

∂u
+

∂f

∂v
= 2

∂f

∂x
∂f

∂u
− ∂f

∂v
= 2

∂f

∂y

and dividing by 2 gives us the same answer we got before.

3.7 Second Partials

So far we’ve spoken explicitly only about the first-order derivatives of f . But each derivative

gives us a new function, which we can also take the derivatives of. In single variable calculus

this gives us “the” second derivative. In multivariable calculus, just as there is more than

one first derivative, there is more than one second derivative.

Definition 3.53. We define the second-order partial derivatives of f(x, y) to be

∂2z

∂2x
= fxx = (fx)x

∂2z

∂x∂y
= fyx = (fy)x

∂2z

∂y∂x
= fxy = (fx)y

∂2z

∂2y
= fyy = (fy)y
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Example 3.54. Let f(x, y) = xy2 + 3x2ey. Then

fx(x, y) = y2 + 6xey fy(x, y) = 2xy + 3x2ey

so we compute

fxx(x, y) = 6ey fyx(x, y) = 2y + 6xey

fxy(x, y) = 2y + 6xey fyy(x, y) = 2x+ 3x2ey.

You may have noticed a repetition here. Though there are four distinct mixed partials

to compute, we only got three separate answers. This isn’t an accident.

Theorem 3.55. If fxy and fyx are continuous at the point (a, b), and (a, b) is an interior

point of their domain, then

fxy(a, b) = fyx(a, b).

These second-order partials measure how quickly the derivatives—the first partials—

change when we change our input. This is similar to your homework problem 14.1.24, which

asked how the partial derivatives changed as you moved from point A to point B.

For example, if fxx is positive, that means that the function gets steeper in the x direction

as you increase x. If fxy is positive, that means the function gets steeper in the x diretion

as you increase y.

Example 3.56. Consider the function f(x, y) = x2 + y2. We see that

fxx(x, y) = 2 fxy(x, y) = 0 fyy(x, y) = 2.

What does this tell us? Well, at any point, moving one unit in the x direction increases the

x slope by about two; and similarly, moving one unit in the y direction increases the y slope

by about two.

But moving in the y direction doesn’t affect the x slope at all, and vice versa. Geometri-

cally, this is because all the cross sections are identical parabolas at different heights: their

levels will be different, but their slopes will all be the same at the same x value. So changing

y doesn’t change the x slope at all.
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We can use these second partial derivatives to improve our approximations. In section

3.4 we talked about linear approximation, which the linear function that best approximates

our function near a given point. With second partials, we can construct the second-degree

Taylor polynomial or quadratic approximation.

Definition 3.57. Let f : R2 → R be a function defined near (a, b). The Taylor polynomial

of degree 1 for f near (a, b) is

T1(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

The Taylor polynomial of degree 2 is

T2(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
fxx(a, b)

2
(x− a)2 + fxy(a, b)(x− a)(y − b) +

fyy(a, b)

2
(y − b)2.

These approximations are used quite often in physics and in any other sort of numeric

approximation work. It’s possible to go to third-order and higher, and this works exactly

like you’d expect; but third-order approximations are rarely actually useful. If the quadratic

approximation isn’t good enough, you generally want to just use a better tool instead.

Example 3.58. Let’s find a quadratic approximation to cos(3x + 2y) + 2 sin(x − y) near

(0, 0).

f(x, y) = cos(3x+ 2y) + 2 sin(x− y) f(0, 0) = 1

fx(x, y) = −3 sin(3x+ 2y) + 2 cos(x− y) fx(0, 0) = 2

fy(x, y) = −2 sin(3x+ 2y)− 2 cos(x− y) fy(0, 0) = −2

fxx(x, y) = −9 cos(3x+ 2y) + 2 sin(x− y) fxx(0, 0) = −9

fxy(x, y) = −6 cos(3x+ 2y) + 2 sin(x− y) fxy(0, 0) = −6

fyy(x, y) = −4 cos(3x+ 2y)− 2 sin(x− y) fyy(0, 0) = −4
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so the quadratic approximation is

T2(x, y) = 1 + 2x− 2y − 9x2/2− 6xy − 2y2.

Suppose we want to find cos(.3− .2) + 2 sin(.1 + .1). Then we have

f(.1,−.1) ≈ T2(.1,−.1) = 1 + .2 + .2− .09/2 + .06− .02 = 1.395.

Plugging in, the true answer is ≈ 1.39234, so this is pretty good.
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