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4 Optimization

There are two major applications of derivatives. The first, which we explored in sections 3.4

and 3.7, is to approximate functions that are hard or annoying to compute. The other is to

attempt to find optimal values of functions.

The case is basically similar to the single-variable case, but as usual some extra wrinkles

are introduced by having more than one input variable.

4.1 Critical points and Local Extrema

Definition 4.1. We say f has a local maximum at the point P0 if F (P0) ≥ f(P ) for all P

near P0.

We say f has a local minimum at the point P0 if F (P0) ≤ f(P ) for all P near P0.

Remark 4.2. Note that we say f “has” an extremum at P . The extreme value is the actual

output of f at that point. Thus, we can’t say that P “is” a maximum of f .

It’s possible to be very precise about what the word “near” means, but in this case we

won’t really bother. A point is a local maximum if you can draw a small circle around it

and it gives the largest value of any point in that circle.

Example 4.3. Let f(x, y) = 1. Does this have any global maxima or minima?

Yes. There is a maximum and a minimum at every single point.

This example is actually less silly in the multivariable case than in the single-variable

case.

Example 4.4. Let f(x, y) = x2. Does this have any global maxima or minima?

Yes. When x = 0 we have a local minimum whose value is zero. Thus there is a minimum

at every point on this line.
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With a picture (in 2 or 3 dimensions), we can identify the local extrema. And with a

sufficiently simple algebraic expression we can figure out what they are. But what can we

do when the situation is more complex? We need to use the derivatives.

Theorem 4.5 (Fermat). If f has a local extremum at P , and ∇f(P ) exists, and P is not

on the boundary of the domain of f , then ∇f(P ) = 0⃗.

Proof. Suppose ∇f(P ) = v⃗ ̸= 0⃗. Then fv⃗(P ) > 0, so f(P + hv⃗) > f(P ) and so f doesn’t

have a local maximum at P . Similarly, f(P −hv⃗) < f(P ) so f doesn’t have a local minimum

at P .

Definition 4.6. If ∇f(P ) = 0⃗ or ∇f is undefined at P , we say that P is a critical point of

f .

Thus Fermat’s theorem tells us that all (interior) local extrema for f occur at critical

points.

Example 4.7. Let f(x, y) = −
√

x2 + y2. Then

∇f(x, y) =
−x√
x2 + y2

i⃗+
−y√
x2 + y2

j⃗

This is actually never equal to zero, since it’s undefined at the point (0, 0). But this still

makes the origin into a critical point, and indeed we can see that f has a local maximum at

the origin.

Example 4.8. Let f(x, y) = x2 − 2x+ y2 − 4y + 5

We compute

∇f(x, y) = (2x− 2)⃗i+ (2y − 4)⃗j

which is 0⃗ precisely when (x, y) = (1, 2). Thus this is the only critical point.

A little algebra tells us that this graph is a paraboloid (x− 1)2 + (y − 2)2. So there is a

minimum at (1, 2) with value 0.

Example 4.9. Let f(x, y) = x2 − y2. Then

∇f(x, y) = 2x⃗i− 2yj⃗

is zero when x = y = 0. Thus there is a single critical point at (0, 0).

However, from the graph we can see that this is neither a maximum nor a minimum. In

fact, it’s a minimum in the x direction, and a maximum in the y direction. We call points

like this “saddle points”.
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Example 4.10. Let f(x, y) = 8y3 + 12x2 − 24xy. We compute

∇f(x, y) = (24x− 24y)⃗i+ (24y2 − 24x)⃗j.

This is zero when 24x = 24y and 24y2 = 24x, which implies that x = y and x = y2, which

gives us either x = y = 0 or x = y = 1. So there are two critical points, at (0, 0) and (1, 1).

From looking at the graph, we can see that there is a saddle point at (0, 0) and a minimum

at (1, 1).

This last problem especially is hard to see what’s happening without looking at a graph.

But the second derivative can tell us what type of extrema we have at critical points.

Proposition 4.11. Suppose ∇f(a, b) = 0⃗. Define

D = fxx(a, b)fyy(a, b)− (fxy(a, b))
2.

Then:

• If D > 0 and fxx(a, b) > 0, f has a local minimum at (a, b).

• If D > 0 and fxx(a, b) < 0, f has a local maximum at (a, b).

• If D < 0 f has a saddle point at (a, b).
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Importantly, if D = 0 then this proposition doesn’t tell us anything and we would need

to do something else. We could have a local maximum, a local minimum, a saddle point, or

something genuinely weird.

Example 4.12. If f(x, y) = x4 + y4, then we have

fx(x, y) = 4x3 fy(x, y) = 4y3

fxx(x, y) = 12x2 fyy(x, y) = 12y2

fxy(x, y) = 0 D = 144x2y2.

We see that we have a critical point at (0, 0), but at that point we get D = 0, which is

unhelpful. But this is clearly a local minimum, since f(0, 0) = 0 and f(x, y) ≥ 0.

If f(x, y) = −x4 − y4, then we have

fx(x, y) = −4x3 fy(x, y) = −4y3

fxx(x, y) = −12x2 fyy(x, y) = −12y2

fxy(x, y) = 0 D = 144x2y2.

We see that we have a critical point at (0, 0), but at that point we get D = 0, which is

unhelpful. But this is clearly a local maximum, since f(0, 0) = 0 and f(x, y) ≤ 0.

If f(x, y) = x4 − y4, then we have

fx(x, y) = 4x3 fy(x, y) = −4y3

fxx(x, y) = 12x2 fyy(x, y) = −12y2

fxy(x, y) = 0 D = −144x2y2.

We see that we have a critical point at (0, 0), but at that point we get D = 0, which is again

unhelpful. In this case we have a saddle point: we can see that it is a minimum holding y

constant, and a maximum holding x constant.

Example 4.13. Let f(x, y) = x2/2 + 3y3 + 9y2 − 3xy + 9y − 9x.

We compute

∇(x, y) = (x− 3y − 9)⃗i+ (9y2 + 18y + 9− 3x)⃗j

and thus there are critical points when x = 3y+9 and 9y2+18y+9 = 3x. Solving this gives

9y2 + 18y + 9 = 9y + 27

9y2 + 9y − 18 = 0

9(y + 2)(y − 1) = 0
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And thus y = −2 or y = 1. We see that if y = −2 then x = 3, and if y = 1 then x = 12, so

the critical points are (3,−2) and (12, 1).

For the second derivative test, we have

fxx(x, y) = 1

fyy = 18y + 18

fxy(x, y) = −3

D = (18y + 18)− (−3)2 = 18y + 9

D(3,−2) = −27 < 0

D(12, 1) = 27

so there is a saddle point at (3,−2) and a minimum at (12, 1).

A Sidebar using Linear Algebra

This is the single idea in the course that would most benefit from a knowledge of linear

algebra, and I want to take a moment to explain why.

We can look at the matrix of second partial derivatives, called the Hessian matrix of f :

Hf =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]
.

This matrix somehow encodes all the concavity information of f ; given a vector in R2 as

input, the matrix outputs the vector that represents the way the function is curving.

The information we care about is the eigenvalues of this matrix. A matrix like this will

have two eigenvectors, which represent the directions of greatest and least concavity; the

concavity is measured by the corresponding eigenvalues.
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So if both eigenvalues are positive, the function curves up in all directions and we have a

local minimum. If both eigenvalues are negative, the function curves down in all directions

and we have a local maximum. If one eigenvalue is positive and the other is negative, the

function curves up in one direction and down in the other, and we have a saddle point.

The test we give in proposition 4.11 is just a way of doing this calculation without having

to use the word “eigenvalue”. The formula D is just the determinant of the Hessian matrix

Hf ; since the determinant is the product of the eigenvalues, if D < 0 then one eigenvalue

is positive and the other is negative. If D > 0 then either both eigenvalues are positive or

both eigenvalues are negative, and we can tell which by looking at the first entry.

This approach has the tremendous advantage that it scales up to functions of more than

two variables. If we have a function f : R3 → R then we can compute

Hf =


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2


This matrix has three eigenvalues. If all of them are positive, we have a local minimum; if

all three are negative, we have a local maximum. If two are positive and one is negative,

or one is positive and two are negative, we have a “saddle point’ where some changes will

increase the ouptut and other changes will decrease it.

(Notice that this means it’s a lot harder to have a local maximum when we have more

dimensions! In single-variable calculus, we need one negative second derivative. In a two-

variable function, we need two negative eigenvalues. In a thousand-variable function, we

need all 1000 eigenvalues to be negative, which is much rarer and also much harder to find

in various ways I’m not going to be precise about.)

4.2 Global Extrema and the Extreme Value Theorem

Critical points and the second derivative test let us determine which points are local extrema,

but we often also want to know what the largest possible value we can get out of a function

is.

Definition 4.14. We say f has a global maximum on R at the point P0 if F (P0) ≥ f(P )

for all P in R.

We say f has a global minimum on R at the point P0 if F (P0) ≤ f(P ) for all P in R.

Example 4.15. Suppose we are running a factory that produces two different products.

The price we can sell each product for depends on the quantity we produce, according to
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the equations

p1 = 600− .3q1 p2 = 500− .2q2. (1)

Our total cost of production is given by

C = 16 + 1.2q1 + 1.5q2 + .2q1q2.

We want to know how many of each item to produce to maximize our total profit.

Notice that here we don’t really care about the relative extrema; we just want to find

the best possible outcome.

First, we need to write our profit as a function of how much of each item we produce.

We observe that our revenue is given by

R(q1, q2) = p1q1 + p2q2 = 600q1 − .3q21 + 500q2 − .2q22.

Profit is revenue minus costs, or

P (q1, q2) = R− C = −16 + 598.8q1 − .3q21 + 498.5q2 − .2q22 − .2q1q2.

Now we have P written as a function of two variables. We want to optimize it on the region

{(q1, q2) : q1 ≥ 0, q2 ≥ 0} since we can’t produce negative quantities.

How do we find the largest possible value? In this case, the “physics” (or economics) of

the situation tell us that it should occur at a relative maximum, since producing nothing is

obviously suboptimal, and we expect our costs to explode as our quantity produced tends

to infinity.

(Alternatively, we can notice that our equation is some sort of paraboloid and thus has

a unique relative maximum that is also the absolute maximum).

Thus we look for critical points, and compute the partial derivatives.

∂P

∂q1
= 598.8− .6q1 − .2q2

∂P

∂q2
= 498.5− .4q2 − .2q1

and setting these equations equal to zero and solving gives us a critical point at (q1, q2) =

(699.1, 896.7). Plugging back in to equation (1) gives us prices of (p1, p2) = (390.27, 320.66)

and we get a total profit of $432,797 dollars.

We’d like to make sure this is in fact a maximum. We can check the second partials, and

we get:
∂2P

∂q21
= −.6

∂2P

∂q1∂q2
= −.2

∂2P

∂q22
= −.4
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and thus D = (−.6)(−.4)− (−.2)2 = .24− .04 = .2. Then D > 0 but ∂2P
∂q21

< 0 and thus we

have a local maximum. In fact, since the second derivatives are constant, we see again that

we have a paraboloid; we can also infer from this that the function never increases again, so

this is the only local maximum and must be a global maximum.

Example 4.16. Suppose a trucker wants to bring 480 cubic meters of gravel to a dump and

needs to build a box for transport. Dumping costs $80 per trip, plus the cost of the box.

The box has height 2m, and costs $100 per square meter for the ends, $50 per square

meter for the sides, $200 per square meter for the bottom. What is the optimum box size?

Let’s say the box has sides of length x and ends of length y. Then the trucker takes

480/(2xy) trips at $80/trip, for a total cost of (240 · 80)/(xy). The total cost of the box is

400y for the ends, 200x for the sides, and 200xy for the bottom. So total cost is

C = 400y + 200x+ 200xy + (240 · 80)/(xy) = 200 (96/(xy) + 2y + x+ xy) .

We want to optimize this on the region {(x, y) : x > 0, y > 0} since we need a positive-size

box.

We can ignore the factor of 200, which doesn’t change optimum. Gradient gives

Cx = 1 + y − 96/(x2y) Cy = 2 + x− 96/(xy2)

Setting equal to zero and solving gives

96 = x2y + x2y2 96 = 2xy2 + x2y2

x2y = 2xy2

x = 2y

96 = 4y3 + 4y4

and the only positive real solution is y = 2. Thus the only critical point in the region is

(4, 2).The total cost of the transport is $5600.
We use the second derivative test to make sure this is a minimum. (It certainly ought to

be, physically). We see that

Cxx = 192/(x3y) Cxy = 1 + 96/(x2y2) Cyy = 192/(xy3)

= 6 = 5/2 = 3/2

and thus

D = 9− 25/4 = 11/4 > 0.

Thus D > 0 and Cxx > 0, so this is a local minimum.

http://jaydaigle.net/teaching/courses/2025-summer-2233-20/ 58

http://jaydaigle.net/teaching/courses/2025-summer-2233-20/


Jay Daigle The George Washington University Math 2233: Multivariable Calculus

In both of these problems, we relied on physical intuition to tell us that a global maximum

or minimum should exist. If we don’t have such a clear physical setup, how can we tell?

Let’s turn the question around and ask how we can avoid having a global maximum.

One way is for the function to keep increasing infinitely the further we go in some direction.

For instance, the function f(x, y) = x+ y doesn’t have a global maximum on the plane.

Obviously this is only possible if the region is infinite. We say a region is bounded if it

doesn’t extend infinitely in any direction—that is, if we can draw a circle of finite radius

around the whole region.

A more subtle way to avoid a maximum is to approach a maximum, and simply not have

the point that would give you the maximum. An example here is the function f(x, y) = x2+y2

on the region x2+ y2 < 1. You can get any value less than 1, but you cannot get 1—so there

is no largest possible value.

This is only possible if the region approaches but doesn’t reach some point. We say a

region is closed if it contains its entire boundary, and thus there are no points approached

by the region but not contained in the region.

If a function is continuous, it turns out that these are the only way to avoid having a

maximum.

Theorem 4.17 (Extreme Value). If f is a continuous function on a closed and bounded

region R, then f has a global maximum and a global minimum on R.

Thus if we have a closed and bounded region, and a continuous function, we know it

must have a global maximum and a minimum.

In single variable calculus, finding these was easy. We found all the critical points and all

the endpoints, plugged them into the function, and then the largest was the global maximum.

In the multivariable case things are a bit harder. We still know that the global maximum

must appear either at a critical point or a boundary point, but there are infinitely many

boundary points so we can’t just plug all of them in. Instead we need a technique to find

extreme values on the boundary.

In order to answer this problem, we need to develop techniques for constrained optimiza-

tion: optimization subject to some constraint equation. This will let us find the optimum

value of a function on the boundary of its domain; it will also allow us to solve natural

problems that ask us to optimize an objective function given a fixed budget, or given some

physical limitations on what is possible.
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4.3 Constrained Optimization and Lagrange Multipliers

In the past two sections, we saw how we can find the maximum or minimum value of

some function. We have critical points wherever the gradient is either zero or non-existent.

Basically, if there’s a non-zero gradient, we can increase our output by going in the direction

the gradient points, so we’re not at a maximum; and we can decrease our output by going

in the opposite direction, so we’re not at a minimum. Thus if we want to have either a

maximum or a minimum, we need a zero or nonexistent gradient.

But this method assumes that we can plug anything into the function that we want. We’re

finding maxima and minima for any possible input. But sometimes when we’re optimizing

things in the real world, we can’t actually pick any possible input.

Example 4.18. Suppose you are running a widget factory and are told to maximize your

output of widgets. If you hire x people and rent y machines, then you will produce f(x, y) =

100
√
x
√
y widgets.

Notice this isn’t actually enough information to solve the problem. We have a goal, or

objective: to maximize the output of the function f(x, y). (And thus we call this function

the objective function.) But we can always increase the output by hiring more workers, or

renting more machines; there’s no actual maximum to the outputs we can produce.

However, realistically we can’t just hire infinitely many people; we have constraints that

limit what inputs to the function we can actually use. You might be able to come up with

all sorts of different constraints: maybe the factory only has space for ten machines; maybe

there are only a hundred qualified workers; maybe you can’t use more than five workers per

machine you have installed.

But for right now, to keep things simple, we’ll assume there’s only one constraint: a

budget. Suppose each person you hire costs $100 per day, and each machine you rent costs

$400 per day; and you have a total budget of $10,000. What should you do? How can you

maximize your objective function subject to these constraints?

In single-variable calculus you might have seen one approach which will work here. We

observe that 100x + 400y = 10000, and thus that x = 100 − 4y. Then we can take f(y) =

100
√
100− 4y

√
y; this is a single-variable function, and we can find the critical points and

maximize it. (I won’t solve this problem here, but it’s fairly straightforward.)

But this method only works if we can easily write some variables as functions of the

others; not every problem can be converted to an unconstrained optimization problem like

this. We want a more flexible method that will work for any sort of constraint equation.
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Notice we have two distinct functions in this problem: the objective function f(x, y),

which we are trying to maximize, and the constraint equation which we can write g(x, y) = c

for some c.

Just like in the unconstrained case, any extremum will happen where there’s no direction

we can go that will increase the value of our objective function. But, we can only go in

some directions and obey the constraint. So we just have to make sure we can’t increase

(or decrease) the objective function by going in any of those directions. That means the

directional derivative in all those directions needs to be zero. That means the gradient needs

to be perpendicular to the constraint curve.

How do we accomplish that? Well, if we can find another vector that’s already perpen-

dicular to the constraint curve, we can just check whether the gradient is perpendicular to

our vector.

At this point we look at this constraint equation and realize it’s actually a level set. Our

constraint equation g(x, y) = c is a level set for g, and we might recall from section 2 that the

gradient of a function is always perpendicular to its level sets. That is, the vector ∇g(x0, y0)

will be perpendicular to the curve g(x, y) = c at the point (x0, y0).

So now we just need to figure out where ∇f and ∇g point in the same direction. This

happens exactly when one of them is a (scalar) multiple of the other; so we need to solve

the equations ∇f = λ∇g, where λ is a new variable we have introduced.

So let’s look back at our factory example. We have f(x, y) = 100
√
x
√
y, g(x, y) =

100x+ 400y and our constraint is g(x, y) = 10000. Then ∇g(x, y) = (100, 400), and

fx = 50

√
y

√
x

fy = 50

√
x

√
y

so we want to solve the system

100λ = 50

√
y

√
x

400λ = 50

√
x

√
y
.
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Thus

2λ
√
x =

√
y

√
x = 8λ

√
y = 16λ2

√
x

λ = ±1/4.

Thus we have
√
x = 2

√
y and so x = 4y. Then we can return to our constraint, and we

know that

10000 = 100x+ 400y = 800y

100 = 8y

y = 25/2

x = 50.

Thus we have a critical point at x = 50, y = 25/2. The maximum then has to happen

either at this cricial point, or at the boundary points where x = 0 or y = 0; but f(0, 25) =

f(100, 0) = 0. Thus 0 is the minimum output (which should make sense!), and the maximum

output occurs at (50, 25/2) when we have hired 50 workers and rented 12.5 machines. Thus

our maximum output is

f(50, 25/2) = 100
√
50
√

25/2 = 2500

widgets.

Remark 4.19. You might wonder about this “rent 12.5 machines” business. What does it

mean to rent half a machine?

This sometimes is a real problem. It turns out that all our calculus techniques depend

on the ability to infinitely divide all our quantities. If we insist on getting whole number

answers, things become much more difficult.

For the purposes of this problem I’ll just assume that we can rent a machine for half the

day and pay half cost, or something like that.

Now let’s look at a simple abstract example so we can see what’s happening geometrically.

We can imagine this process as drawing a graph of the constraint, and then drawing level

sets of the objective function; we want to find the “largest” level set that still intersects the

constraint.

Example 4.20. Let’s find the maximum and minimum values of f(x, y) = x+y on x2+y2 =

4.
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We compute ∇f(x, y) = (1, 1) and ∇g(x, y) = (2x, 2y), so we are looking for points where

(1, 1) = λ(2x, 2y) for some λ ∈ R. This gives us x = y = 1/(2λ).

To get specific values, we substitute this back into x2+ y2 = 4. We get 2x2 = 4 so x2 = 2

and thus x = ±
√
2. We know that y = x so we have two critical points: (

√
2,
√
2) and

(−
√
2,−

√
2). (We can also see that λ = 1/(2x) = 1/

√
8).

Plugging in values, we see that we have a maximum of 2
√
2 at (

√
2,
√
2) and we have a

minimum of −2
√
2 at (−

√
2,−

√
2).

Importantly, notice that this is exactly where you’d expect the maximum and minimum

to be.

Example 4.21. Now let’s find the maximum and minimum of f(x, y) = 3x+y on x2+y2 = 4.

We compute that∇f(x, y) = (3, 1), so we get 3 = λ2x and 1 = λ2y. This gives us x = 3y,

and thus we get 10y2 = 4, or y = ±
√
2/5. So our two critical points are (3

√
2/5,

√
2/5)

and (−3
√

2/5,−
√

2/5).

Plugging in values gives a maximum of 10
√

2/5 at (3
√
2/5,

√
2/5) and a minimum of

−10
√

2/5 at (−3
√

2/5,−
√

2/5).

We sometimes like to express these in terms of the Lagrangian function.
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Definition 4.22. If we want to optimize f(x, y) subject to g(x, y) = c, then the Lagrangian

function of the problem is

L(x, y, λ) = f(x, y)− λ(g(x, y)− c).

Unconstrained critical points of L correspond to critical points of the original constrained

optimization.

Example 4.23. Suppose we’re running a factory, and our output depends on three inputs:

our output is f(x, y, z) = 20x3/5y2/5z1/5 .

Each input has a cost. x costs 50, y costs 30, and z costs 20. If our total budget is

$18,000, how can we maximize the output?

Our budget constraint is 50x+ 30y + 20z = 18000. Then we can set up the Lagrangian:

L(x, y, z, λ) = 20x3/5y2/5z1/5 − λ(50x+ 30y + 20z − 18000)

Lx = 12
y2/5z1/5

x2/5
− 50λ

Ly = 8
x3/5z1/5

y3/5
− 30λ

Lz = 4
x3/5y2/5

z4/5
− 20λ

Lλ = 18000− 50x− 30y − 20z.

(We see that we get the constraint equation back as the partial with respect to λ). Solving

for λ gives

λ =
6

25

y2/5z1/5

x2/5

λ =
4

15

x3/5z1/5

y3/5

λ =
1

5

x3/5y2/5

z4/5

Solving for z1/5 in the first two equations and setting them equal gives

25

6
λ(x/y)2/5 =

15

4
λ(y/x)3/5

50x = 45y

x = 9y/10.
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Similarly, we can solve for x3/5 and equate the last two equations, which gives

15

4
λy3/5/z1/5 = 5λz4/5/y2/5

15y = 20z

z = 3y/4.

Plugging this all into the fourth (constraint) equation gives

0 = 18000− 50(9y/10)− 30y − 20(3y/4)

= 18000− 45y − 30y − 15y = 20000− 90y

y = 200.

This also gives us x = 180 and z = 150.

How do we know this is a maximum? Well, the graph of the constraint is a plane, and

the region of possible solutions is a triangle where the plane intersects the x = 0, y = 0, and

z = 0 planes (since we can’t produce negative amounts). On this entire boundary region

the output is zero, and the output at our critical point is ≈ 462 > 0, so we know that the

boundary points are minima and the critical point is a maximum.

This brings us back to the problem of finding global extrema on a region. The basic

approach is to look for critical points in the interior, and then use Lagrange multipliers to

find any extrema on the boundary.

Example 4.24. Maximize and minimize f(x, y) = (x−1)2+(y−2)2 subject to x2+y2 ≤ 45.

First we look for interior critical points. We have

fx(x, y) = 2(x− 1) x = 1

fy(x, y) = 2(y − 2) y = 2
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so the unique critical point is at (1, 2).

We could use the second derivative test: we compute

fxx(x, y) = 2 fxy = 0

fyy(x, y) = 2

D = 4 > 0

and since D > 0, fxx > 0 we know this is a local minimum.

But we don’t actually need to do this since we’re just looking for largest and smallest

point. So we observe that f(1, 2) = 0 and move to the boundary. (It is in fact clear that this

is a global minimum, since f is a sum of squares and can never give us a negative output).

On the boundary, we have the constraint x2 + y2 = 45 and we have ∇f(x, y) = (2(x −
1), 2(y − 2)) and ∇g(x, y) = (2x, 2y). So we calculate

2(x− 1) = λ2x λ =
x− 1

x

2(y − 2) = λ2y λ =
y − 2

y
x− 1

x
=

y − 2

y

xy − y = xy − 2x 2x = y.

Plugging this into the constraint gives us 5x2 = 45 so x2 = 9 and x = ±3. Then we have

y = ±6. So the two critical points are (3, 6) and (−3,−6).

We calculate

f(3, 6) = 22 + 42 = 20 f(−3,−6) = (−4)2 + (−8)2 = 80.

Thus the global maximum is 48, achieved at (−3,−6), while the global minimum is 0,

achieved at (1, 2).
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What does λ mean? It tells us how much the optimum changes when you change the

constraint c. Geometrically, we have ∇f = λ∇g. ∇g is, roughly speaking, how quickly c

increases if we move the contour; ∇f is of course how quickly f changes when we move the

contour. λ is the ratio between these, and thus how quickly f changes when we move c.

Alternatively, we can compute this with the chain rule. We know that ∂f
∂x

= λ ∂g
∂x

and
∂f
∂y

= λ∂g
∂y
, and of course dg

dc
= 1 since c = g(x, y). Then we can compute:

df

dc
=

∂f

∂x

dx

dc
+

∂f

∂y

dy

dc

= λ
∂g

∂x

dx

dc
+ λ

∂g

∂y

dy

dc
= λ

dg

dc
= λ.

Example 4.25 (Recitation). Let’s find the global extrema of f(x, y) = x2y + 3y2 − y on

x2 + y2 ≤ 10

To find interior critical points, we compute:

(2xy, x2 + 6y − 1) = (0, 0)

The first equation tells us that either x = 0 or y = 0. Thus the critical points are

(0, 1/6), (1, 0), and (−1, 0). All three are in the region, so we consider all of them; we

get values of −1/12, 0,, and 0 respectively.

Now we want to find extrema on the boundary. We compute:

fx = 2xy = λ2x = gx

fy = x2 + 6y − 1 = λ2y = gy

λ = y

x2 = 2y2 − 6y + 1

10− y2 = 2y2 − 6y + 1

0 = 3y2 − 6y − 9 = 3(y2 − 2y − 3) = 3(y − 3)(y + 1)

So we get y = 3 or y = −1. This gives us critical points (±1, 3) and (±3,−1).

f(±1, 3) = 3 + 27− 3 = 27

f(±3,−1) = 9 + 3 + 1 = 13

(Incidentally, we can compute that λ(±1, 3) = 3, which tells us that at (1, 3), increasing

c by 1 would increase the maximum value of f by about 3).

So over the whole region, the global minimum is −1/12 at (0, 1/6) and the global maxi-

mum is 27 at (±1, 3).
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As a note: why do we always get both positive and negative x values for each y? The

x variable only shows up in an x2 so it can never affect anything whether it’s positive or

negative. We see this represented in the graph, because it is left-right symmetric.
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