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8 Divergence and Differential Forms

Recall that in section 6 we defined the line integral, then looked for a way to avoid it. We saw

that if a vector field F⃗ is “conservative” then line integrals are path independent—we can

find some potential function f so that ∇f = F⃗ , and then evaluate f on the endpoints rather

than integrating F⃗ over the whole curve. We then saw that if a vector field has ∇× F⃗ = 0,

it is conservative.

Now we want to do the same thing for surface integrals. In section 7 we defined the

surface integral, then saw that if our field G⃗ is a curl field—that is, G⃗ = ∇ × F⃗ for some

vector potential F⃗—then instead of computing the surface integral of G⃗ over a surface, we

can integrate F⃗ over the boundary. But how can we tell when a field is a curl field?

8.1 The divergence of a vector field

Just as we defined the curl to be the density of the circulation, which is the line integral of a

vector field, we will define the divergence to measure the density of the flux. Thus divergence

will measure the extent to which a vector field flows into or out of a region.

Definition 8.1. The divergence or flux density of a vector field is

∇ · F⃗ (x, y, z) = lim
volume→0

∫
S
F⃗ · dA⃗

volume of S

where S is a sphere centered at (x, y, z) oriented outwards.

The divergence at the origin on the left is positive; on the right it is negative.

Proposition 8.2. We can compute the divergence with

∇ · F⃗ =

(
∂

∂x
i⃗+

∂

∂y
j⃗ +

∂

∂z
k⃗

)
·
(
F1⃗i+ F2j⃗ + F3k⃗

)
=

∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.
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Proof. It doesn’t actually matter whether we use a small sphere or a small box. So let’s

imagine computing the flux density of F⃗ over a small box oriented outwards, with side

lengths ∆x,∆y,∆z and the corner closest to the origin at (x0, y0, z0).

Then the box has six faces. Let’s consider the top and bottom. The bottom face has

vector ∆x∆y(−k⃗). Since the box is small the vector field is approximately constant at the

value F⃗ (x0, y0, z0), so the integral over the bottom face is approximately

F⃗ (x0, y0, z0) · (−∆x∆y)k⃗ = −F3(x0, y0, z0)∆x∆y.

Looking at the top now, we see that the face has vector ∆x∆yk⃗, but the vector field is now

approximately F⃗ (x0, y0, z0 +∆z). The integral is then approximately

F⃗ (x0, y0, z0 +∆z) ·∆x∆yk⃗ = F3(x0, y0, z0 +∆z)∆x∆y.

Adding these two together gives

F3(x0, y0, z00 + ∆z)∆x∆y − F3(x0, y0, z0)∆x∆y =
F3(x0, y0, z0 +∆z)− F3(x0, y0, z0)

∆z
∆x∆y∆z.

To compute the flux density, we divide by the volume, which is ∆x∆y∆z. Then taking the

limit gives us

lim
∆z→0

F3(x0, y0, z0 +∆z)− F3(x0, y0, z0)

∆z
=

∂F3

∂z
.

We run through the same calculations for the two faces on the side to get ∂F1

∂x
and the

front and back to get ∂F2

∂y
. Adding all three components together gives us

∇ · F⃗ (x, y, z) =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

as desired.

Example 8.3. Let’s compute the divergence of F⃗ (r⃗) = r⃗ at the origin.

Even without doing any computations, we can see that the divergence must be positive,

since the flux is definitely outwards.

First, let’s use the geometric definition. A sphere of radius a has outward flux of 4πa3.

We can see this by arguing that the vector field is always perpendicular to the sphere, so we

have
∫
S
F⃗ · dd⃗A⃗ is equal to the magnitude of F⃗ times the surface area of the sphere, which

is a · 4πa2 = 4πa3. Alternatively, we have

Flux =

∫
S

F⃗ · r⃗

∥r⃗∥
dA =

∫
S

∥r⃗∥ dA = a

∫
S

1 da = a · 4πa2 = 4πa3.
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The volume is 4/3πa3, so the flux density is

lim
a→0

4πa3

4/3πa3
= lim

a→0
3 = 3.

Alternately, we can compute with the algebraic definition. We have

∇ · F⃗ = ∇ · (x⃗i+ yj⃗ + zk⃗) =
∂x

∂x
+

∂y

∂y
+

∂z

∂z
= 1 + 1 + 1 = 3.

As usual, you can see that we’d much prefer to compute the divergence using the algebraic

definition, rather than the geometric definition.

Example 8.4. Let F⃗ (x, y, z) = x2y⃗i+ cos(z)⃗j + sin(z)k⃗. Then

∇ · F⃗ (x, y, z) = 2xy + 0 + cos(z).

Let G⃗(x, y) = −y⃗i+ x⃗j. Then ∇· G⃗ = 0+0 = 0. G⃗ is rotating, but it has zero divergence

since there’s no net flux into or out of any region.

Any constant vector field has zero divergence since the exact same amount of fluid is

entering and leaving every point.

Definition 8.5. We say that F⃗ is divergence free or solenoidal or incompressible if ∇· F⃗ = 0

whenever F⃗ is defined.

Physically, this means that the density of fluid is conserved—on net it isn’t flowing into

or out of any region.

Example 8.6. Let E⃗ = r⃗
∥r⃗∥p . Let’s find the divergence, and determine for what p this field

is solenoidal.
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We have

∂E1

∂x
=

∂

∂x

x

(x2 + y2 + z2)p/2

=
(x2 + y2 + z2)p/2 − xp

2
(x2 + y2 + z2)p/2−1(2x)

(x2 + y2 + z2)p

=
(x2 + y2 + z2)p/2 − px2(x2 + y2 + z2)p/2−1

(x2 + y2 + z2)p

=
(x2 + y2 + z2)− px2

(x2 + y2 + z2)p/2+1

∂E2

∂y
=

(x2 + y2 + z2)− py2

(x2 + y2 + z2)p/2+1

∂E3

∂z
=

(x2 + y2 + z2)− pz2

(x2 + y2 + z2)p/2+1

∇ · E⃗ =
3(x2 + y2 + z2)− px2 − py2 − pz2

(x2 + y2 + z2)p/2+1

=
3− p

(x2 + y2 + z2)p/2
=

3− p

∥r⃗∥p
.

Thus E⃗ is solenoidal if and only if p = 3. (Recall that in this case, we have an inverse-

square law, as appears in equations for electromagnetism. In fact, all magnetic fields are

solenoidal).

Proposition 8.7. If G⃗ = ∇× F⃗ , then ∇ · G⃗ = 0.

If G⃗ be a vector field defined everywhere and ∇ · G⃗ = 0, then G⃗ is a curl field, that is,

there exists a vector field F⃗ such that ∇× F⃗ = G⃗.

Proof. Suppose there is a vector field F⃗ such that ∇× F⃗ = G⃗. Then at any point, we know

that

∇ · G⃗ = lim

∫
S
G⃗ · dA⃗

Volume
.

But by Stokes’s theorem, we know that∫
S

G⃗ · dA⃗ =

∫
C

F⃗ · dr⃗

where C is the boundary of S. But S is a sphere, so the boundary is empty, and this integral

must be zero.

(You can also draw an arbitrary closed curve along S, and compute the flux integrals

of the two pieces S is divided into; they must be equal except for sign, again by Stokes’s

theorem).
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Then

∇ · G⃗ = lim
0

Volume
= lim 0 = 0.

Conversely, suppose that ∇ · G⃗ = 0. Then we define a function

F⃗ (r⃗) =

∫ 1

0

G⃗(tr⃗)× tr⃗ dt.

This function is defined everywhere, and after some annoying algebra (and the knowledge

that the curl operator commutes with integrals) we can check that ∇ × F⃗ = G⃗. Notice

that here we need G⃗ to be defined everywhere, in order for this integral to be consistently

defined.

Remark 8.8. Compare both this proposition and its proof with proposition 6.51 in section

6.5.

Example 8.9. We saw earlier that G⃗(x, y) = −y⃗i + x⃗j is solenoidal. Let’s find its vector

potential.

We know that ∇× F⃗ = G⃗. In particular, this means that

∂F3

∂y
− ∂F2

∂z
= −y

∂F1

∂z
− ∂F3

∂x
= x

∂F2

∂x
− ∂F1

∂y
= 0.

It’s hard to figure out where to start with this, because we have a lot of information to work

with.

In fact we have a lot of degrees of freedom, since if f is any scalar function then∇×(∇f) =

0⃗ and thus ∇× (F⃗ +∇f) = G⃗, so there are infinitely many options. By choosing a f so that
∂f
∂z

= −F3 we can assume that F3 = 0, and our equations reduce to

−∂F2

∂z
= −y

∂F1

∂z
= x

∂F2

∂x
− ∂F1

∂y
= 0.

Then we have F2(x, y, z) = yz + g(x, y), and F1(x, y, z) = xz + h(x, y). Then the third

equation tells us that ∂g
∂x

= ∂h
∂y
, and so we can take F⃗ (x, y, z) = xz⃗i+ yzj⃗.
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We can check that

∇× (xz⃗i+ yzj⃗) =

∣∣∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂
∂x

∂
∂y

∂
∂z

xz yz 0

∣∣∣∣∣∣∣∣ = −y⃗i+ x⃗j + (0− 0)k⃗ = G⃗(x, y, z).

Example 8.10. Let G⃗(x, y, z) = (x2, 3xz2,−2xz). Then ∇ · G⃗ = 2x + 0 − 2x = 0, so G⃗ is

solenoidal. We can work out that F⃗ = ∇× (xz3,−x2z, 0) by computing

−∂F2

∂z
= x2

∂F1

∂z
= 3xz2

∂F2

∂x
− ∂F1

∂y
= −2xz.

Then F2(x, y, z) = −x2z + f(x, y) and F1(x, y, z) = xz3 + g(x, y). The third equation gives

us that −2xz + ∂f
∂x

− ∂g
∂y

= −2xz so we can take f = g = 0.

8.2 The Divergence Theorem

Now we’re ready to state the higher-dimension analogue of Green’s Theorem.

Theorem 8.11 (Divergence Theorem). Let W be a solid three-dimensional region whose

boundary S is a piecewise smooth surface oriented outwards, and F⃗ a smooth vector field on

an open region containing S and W . Then∫
S

F⃗ · dA⃗ =

∫
W

∇ · F⃗ dV.
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Proof. This proof is basically the same as the proof of Green’s theorem.

The left-hand integral is the flux out of the entire boundary. We can approximate the

right-hand integral by dividing the region up into small cubes; the divergence in each cube is

approximately the average flux out of that cube. Taking the integral adds up the flux from

each cube, and we get the total flux out of W .

Example 8.12. Let W = {(x, y, z) : −1 ≤ x, y, z ≤ 1} be a cube with side length 2 centered

at the origin, and let S be its boundary. Set F⃗ (x, y, z) = x⃗i + yj⃗ + zk⃗. What is the flux of

F⃗ out of S?

Computing the flux integral directly would involve parametrizing six separate surfaces.

Instead we can compute ∇ · F⃗ = 1 + 1 + 1 = 3, so∫
S

F⃗ · dA⃗ =

∫
W

∇ · F⃗ dV =

∫ 1

−1

∫ 1

−1

∫ 1

−1

3 dx dy dz = 24.

Suppose instead the vector field is F⃗ (x, y, z) = xy⃗i + yzj⃗ + xyzk⃗. Then we compute

∇F⃗ (x, y, z) = y + z + xy, and our total flux is∫
S

F⃗ · dA⃗ =

∫
W

∇ · F⃗ dV

=

∫ 1

−1

∫ 1

−1

∫ 1

−1

y + z + xy dx dy dz = 0.

Example 8.13. Compute
∫
S
F⃗ · dA⃗ where F⃗ (x, y, z) = (x2yz + y2z)⃗i+ xy2zj⃗ + (x2 + y2)k⃗,

and S is the surface of the portion of the unit sphere in the octant x, y, z ≥ 0. Notice this

surface has four pieces!

We could parametrize each piece and compute the surface integral over it, but that seems

difficult. Instead we compute

∇ · F⃗ (x, y, z) = 2xyz + 2xyz + 0 = 4xyz∫
S

F⃗ · dA⃗ =

∫
W

4xyz · dV

=

∫ 1

0

∫ 2π

0

∫ π

0

4(ρ cos θ sinϕ)(ρ sin θ sinϕ)(ρ cosϕ)ρ2 sinϕ dϕ dθ dρ

=

∫ 1

0

∫ 2π

0

∫ π

0

4ρ4 cos θ sin θ sin3 ϕ cosϕ dϕ dθ dρ

=

∫ 1

0

∫ 2π

0

ρ4 cos θ sin θ sin4 ϕ|π0 dθ dρ = 0.

Proposition 8.14. If F⃗ is a solenoidal vector field defined on W , and S is the boundary of

W , then
∫
S
F⃗ · dA⃗ = 0.

http://jaydaigle.net/teaching/courses/2025-summer-2233-20/ 150

http://jaydaigle.net/teaching/courses/2025-summer-2233-20/


Jay Daigle The George Washington University Math 2233: Multivariable Calculus

Proof. ∫
S

F⃗ · dA⃗ =

∫
W

∇ · F⃗ dV =

∫
W

0 dV = 0.

Example 8.15. Let F⃗ (r⃗) = r⃗
∥r⃗∥3 . Let’s compute the surface integral of F⃗ over S, the

ellipsoid x2 + 4y2 + 9z2 = 25 oriented outwards.

We don’t want to parametrize this. But it’s easy to compute the flux over the sphere

oriented outwards. We see that F⃗ is always perpendicular to the sphere, so the surface

integral is ∥F⃗∥ · 4π = 4π.

Now consider the region of space W bounded on the inside by a sphere of radius 1, and

bounded on the outside by S. Then by the divergence theorem, we have∫
W

∇ · F dV =

∫
S−T

F⃗ · dA⃗

where T is the unit sphere oriented outwards; we have the integral over S − T because we

want the boundary oriented away from the region, and thus we take the sphere oriented

inwards.

But we saw in example 8.6 that ∇ · F⃗ (R⃗) = 0. Thus we have

0 =

∫
S−T

F⃗ · dA⃗

=

∫
S

F⃗ · dA⃗−
∫
T

F⃗ · dA⃗∫
S

F⃗ · dA⃗ =

∫
T

F⃗ · dA⃗ = 4π.

Thus the flux integral through S is equal to 4π.

8.3 The Three Theorems

Over this course, we have defined three different derivative operators:

• The gradient ∇ takes in a scalar function and outputs a vector field.

• The curl ∇× takes in a vector field and outputs another vector field.

• The divergence ∇· takes in a vector field and outpus a scalar function.

We also discovered the following relationships among the derivative operators:

1. ∇×∇f = 0⃗

http://jaydaigle.net/teaching/courses/2025-summer-2233-20/ 151

http://jaydaigle.net/teaching/courses/2025-summer-2233-20/


Jay Daigle The George Washington University Math 2233: Multivariable Calculus

2. If F⃗ is defined everywhere and ∇× F⃗ = 0⃗, then there is a f with ∇f = F⃗ .

3. ∇ · ∇ ×G = 0⃗

4. If G⃗ is defined everywhere and ∇ · G⃗ = 0 then there is a F⃗ with ∇× F⃗ = G⃗.

Notice that the first two statements look just like the last two statements. Whenever we

have a collection of theorems like this that all look similar, we should ask what they’re a

specialcase of.

We also developed three major theorems that let us convert one integral into another.∫
C

∇f · dr⃗ = f(Q)− f(P )∫
S

∇× F⃗ · dA⃗ =

∫
C

F⃗ · dr⃗∫
W

∇ · F⃗ dV =

∫
S

F⃗ · dA⃗

Again, these theorems all look similar: they each tell us that the integral over a region of the

derivative of a function, is equal to the integral over the boundary of the original function.

Again, we want to figure out the right statement to generalize all these theorems. The correct

statement requires us to understand differential forms.

8.4 Differential Forms

differential equation (indefinite integral); Lebesgue integral (unsigned definite integral); in-

tegration of forms (signed definite integral).

How does an integral work? Let’s think about the single-variable case. If we’re doing a

path integral over a path r, we compute something like∫
r

F⃗ · dr⃗ = lim
∑

F⃗ (x⃗i) · r⃗ ′(x⃗i)∆x.

What we’re doing here is computing the infinitesimal work over a very small straight-line

movement, and then adding up all of these infinitesimals. In order to do this, we need two

things: we need a path to integrate over, and we need some way of computing the work done

over a small section of that path. We want to generalize both of those things.

Definition 8.16. A k-dimensional parametrized oriented manifold in an ambient space Rn

is a function r⃗ : [0, 1]k → Rn. An oriented manifold is any surface that can be broken into

pieces, each of which can be parametrized in this way.

http://jaydaigle.net/teaching/courses/2025-summer-2233-20/ 152

http://jaydaigle.net/teaching/courses/2025-summer-2233-20/


Jay Daigle The George Washington University Math 2233: Multivariable Calculus

Remark 8.17. In practice we don’t always choose parametrizations where all of our bounds

go from 0 to 1. But we could if we wanted to, and the theory is easier to work with if we

make that assumption. It doesn’t change anything important.

In the one-dimensional case, we divided our curve up into infinitesimal line segments with

lengths ∆x. In the k-dimensional case we want to chop things up into infinitesimal squares

or cubes or hypercubes. We will represent an infinitesimal square with ∆x1 ∧∆x2, a cube

with ∆x1 ∧∆x2 ∧∆x3, and so on. (The wedge represents an “exterior product”, but don’t

worry too much about what that means).

In our path integral, we needed some function that would take in an infinitesimal path,

at a location in space, and tell us how much work was done by moving over that infinitesimal

path. Thus, we needed a function that takes in a point x⃗ and an infinitesimal vector ∆x⃗,

and outputs an amount of work. Thus we need a function ωx⃗ : Rn → R.
Further, we want this function to be linear, which means that it commutes with addition

and multiplication:

1. ωx⃗(∆x⃗1 +∆x⃗2) = ωx⃗(∆x⃗1) + ωp(∆x⃗2)

2. ωx⃗(r∆x⃗) = rωx⃗(∆x⃗).

So where can we get these functions from? It turns out that every function with this

property can be given by a dot product, and there is some F⃗ such that ωx⃗(v⃗) = F⃗ (x⃗) · v⃗.
Thus we have the usual path integral formulation:∫

r

ω ≈
∑

ωx⃗i
(∆x⃗i) =

∑
F⃗ (x⃗i) ·∆x⃗i ≈

∑
F⃗ (x⃗i) · r⃗ ′(x⃗i)∆xi ≈

∫
r

F · dr⃗.

We’d like to generalize this idea, to the idea of a differential form.

Definition 8.18. A k-form at a point x⃗ is a multilinear function ωx⃗ : (Rn)k to R. That is,
a k form takes in k vectors and outputs a real number, and satisfies the axioms

1. ωx⃗(∆x⃗1 ∧ · · · ∧∆x⃗k) + ωx⃗(∆y⃗1 ∧ · · · ∧∆x⃗k) = ωx⃗((∆x⃗1 +∆y⃗1) ∧ · · · ∧∆x⃗k)

2. rωx⃗(∆x⃗1 ∧ · · · ∧∆x⃗k) = ωx⃗(r∆x⃗1 ∧ · · · ∧ r∆x⃗k)

We also require that ωx⃗∆x⃗ ∧∆x⃗ = 0 for any x⃗. This represents the idea that a “parallelo-

gram” whose two edges are given by the same vector has zero area.

Remark 8.19. We can also define a zero-form, which at each point takes in no vectors at all

and outputs a real number. A zero-form is then just a scalar function.
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We can get one more fact out of this wedge product: we have

0 = (∆x⃗1 +∆x⃗2) ∧ (∆x⃗1 +∆x⃗2)

= ∆x⃗1 ∧∆x⃗1 +∆x⃗1 ∧∆x⃗2 +∆x⃗2 ∧∆x⃗1 +∆x⃗2 ∧∆x⃗2

= ∆x⃗1 ∧∆x⃗2 +∆x⃗2 ∧∆x⃗1

∆x⃗1 ∧∆x⃗2 = −∆x⃗2 ∧∆x⃗1.

Thus the wedge product is anticommutative.

Every differential k-form can be written f(x⃗)dxa1 ∧ · · · ∧ dxak for some scalar function

f(x⃗) and some ai ∈ {1, . . . , n}. (In algebraic language, the set {dxa1 ∧ · · · ∧ dxak} forms a

basis for the space of differential k-forms).

In R3, a 1-form is fdx + gdy + hdz; we have actually seen this notation in section 7.2

when we talked about differential notation. Similarly, a 2-form is fdxdy + gdxdz + hdydz.

Every 3-form is fdxdydx.

Definition 8.20. We define the integral of a k-form ω over a k-dimensional oriented manifold

r by ∫
r

ω =
∑

ωx⃗i
(∆x⃗i,1 ∧ . . .∆x⃗i,k).

We’ve introduced a bunch of new notation now. What does that get us? Well, first,

we’ve figured out how to extend our definitions to integrals in more than three dimensions,

at least sort of. But it actually gets us a lot more after we define the derivative.

If f is a scalar function, then the derivative df at the point x⃗ is a linear function such

that f(x⃗ + v⃗) ≈ f(x⃗) + dfx⃗(v⃗). (Algebraically this is given by the gradient). But this is a

linear function that takes in a vector and outputs a scalar, and thus is a 1-form. We can

generalize this:

Definition 8.21. Let ω = fdxa1 ∧ · · · ∧ dxak be a k-form. Then we define the derivative of

ω to be the k + 1-form

dω =
n∑

i=1

∂f

∂xi

dxi ∧ dxa1 ∧ · · · ∧ dxak .

Proposition 8.22. Let ω be a k-form and α a ℓ-form. Then

1. d(dω) = 0

2. d(ω ∧ α) = dω ∧ α + (−1)k(ω ∧ dα).
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We now can explain all of the patterns we saw in section 8.3. We have already seen that

0-forms are scalars, and we can identify 1-forms with vector fields. When the ambient space

is R3, we can also identify 2-forms with vector fields, and 3-forms with scalar functions. (For

instance, a 3-form in R3 is always given by fdx∧ dy∧ dz, so we can identify it purely by the

function f).

We had three derivatives: the gradient, the curl, and the divergence. In R3, then the

derivative of a 0-form is given by the gradient; the derivative of a 1-form is given by the curl;

and the derivative of a 2-form is given by the divergence.

We had the patterns given by the Fundamental Theorem of Line Integrals, Stokes’s

theorem, and the Divergence Theorem. These are all generalized into the generalized Stokes’s

theorem.

Theorem 8.23 (Stokes). If M is an oriented k+1-dimensional manifold with boundary ∂M

an oriented k-dimensional manifold, and ω is a k-form, then∫
M

dω =

∫
∂M

ω.

This makes it important to ask when a (k + 1)-form is the derivative of some k-form.

Definition 8.24. We say a k-form ω is closed if dω = 0. A closed 1-form is irrotational and

a closed 2-form is solenoidal.

We say that ω is exact if there is a (k − 1)-form α with dα = ω. An exact 1-form is

conservative and an exact 2-form is a curl field.

We can see that every exact form must also be closed, since then dω = d(dα) = 0. It is

not the case, that we have seen in class, that every closed form is exact; however, a closed

form defined everywhere on Euclidean space must be exact.

More generally, every closed form on a domain with no holes is exact; but a domain with

holes in it will have closed forms that are not exact. This means we can use the difference

between closed forms and exact forms to measure the extent to which our domain has holes.

Definition 8.25. If α, β are closed k-forms on a manifold M , then we say that α and β are

cohomologous if α− β is an exact form. This is an equivalence relation on closed k-forms.

We define the kth de Rham cohomology group of M , written Hk
dR(M), to be the set of

equivalence classes of closed k-forms under the cohomology relation. In fact this set forms a

group under the operation of addition.

If Hk
dR(M) contains exactly one element, then all closed forms are exact. This implies

that every k-dimensional sphere can be contracted through M to become a single point.

H1
dR(M) contains exactly one element, we say that M is simply connected.
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This doesn’t seem that useful, but the theory of algebraic topology and the Mayer-Vietoris

sequence allows us to compute these cohomology groups in a relatively easy and calculus-free

way. Unfortunately, We won’t be discussing that here.

Finally, we should mention the pull-back. Suppose M and N are manifolds and ϕ : M →
N is a function between them. If we have a k-form ω defined on N , then we can use it to

define a form ϕ∗(ω) on M that satisfies∫
ϕ(M)

ω =

∫
M

ϕ∗(ω).

We call this form the pull-back of ω along ϕ, and define it essentially by plugging points of

M into ϕ before plugging that into ω; thus if f is a 0-form, we have ϕ∗f(x⃗) = f(ϕ(x⃗)); and

if ω is a 1-form we have

(ϕ∗ω)x⃗(v⃗) = ωϕ(x⃗)(ϕ(v⃗)).

The pull-back conveniently satisfies the relationships ϕ∗(ω∧α) = (ϕ∗ω)∧(ϕ∗α) and d(ϕ∗ω) =

ϕ∗(dω); and from the pull-back, we can recover the change-of-variable integral formulas we

use for u-substitution and in section 5.5.
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