
Math 2233 Summer 2025
Multivariable Calculus

Mastery Quiz 11
Due Wednesday, August 6

This week’s mastery quiz has three topics. Everyone should submit M6. If you have a
4/4 on M5, or a 2/2 on S5, you don’t need to submit them again.

Don’t worry if you make a minor error, but try to demonstrate your mastery of the
underlying material. Feel free to consult your notes, but please don’t discuss the actual
quiz questions with other students in the course.

Remember that you are trying to demonstrate that you understand the concepts involved.
For all these problems, justify your answers and show your work. Do not just write “yes” or
“no” or give a single number.

Please turn this quiz in class on Wednesday. You may print this document out and write
on it, or you may submit your work on separate paper; in either case make sure your name
and recitation section are clearly on it. If you absolutely cannot turn it in in person, you
can submit it electronically but this should be a last resort.

Topics on This Quiz

• Major Topic 5: Line Integrals

• Major Topic 6: Surface Integrals

• Secondary Topic 5: Vector Fields

Name:
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M5: Line Integrals

(a) Evaluate
∫
C
F⃗ · dr⃗ where F⃗ (x, y) = x2y2⃗i+ 2xyj⃗ and C is the boundary of the square

(clockwise) through points (0, 0), (0, 3), (3, 3), (3, 0).

Solution: We could parametrize the outside of the square, but that would actually
suck. Instead we integrate over the square [0, 3] × [0, 3], which works by Green’s
Theorem. We compute the curl

∇× F⃗ (x, y) =
∂

∂x
(2xy)− ∂

∂y
(x2y2) = 2y − 2x2y.

So the integral counterclockwise around the square is givin by Green’s Theorem:∫
−C

F⃗ · dr⃗ =
∫ 3

0

∫ 3

0

2y − 2x2y dy dx

=

∫ 3

0

y2 − x2y2
∣∣∣3
0
dx

=

∫ 3

0

9− 9x2 dx = 9x− 3x3
∣∣∣3
0
= 27− 81 = −54.

Thus the integral clockwise around the square is 54.

(b) Evaluate
∫
C
G⃗ ·dr⃗ where G⃗(x, y, z) = z⃗i−yj⃗+2xk⃗ and C is the straight line path from

(0, 0, 0) to (1, 2, 3).

Solution: We can parametrize C with r⃗(t) = (t, 2t, 3t) for 0 ≤ t ≤ 1. Then the
integral is ∫

C

G⃗ · dr⃗ =
∫ 1

0

(
3t⃗i− 2t⃗j + 2tk⃗

)
·
(⃗
i+ 2⃗j + 3k⃗

)
dt

=

∫ 1

0

3t− 4t+ 6t dt =

∫ 1

0

5t dt

=
5

2
t2 |10=

5

2
.

(c) Let f(x, y, z) = 3x2y + z
x
. Compute

∫
C
∇f ds where C is parametrized by the curve

r⃗(t) = (t, t2

t+4
, t) for t ∈ [1, 4].

Solution: We could compute the whole line integral out, but that would be awful.
Instead we use the fundamental theorem of line integrals, and we have∫

C

∇f ds = f(r(4))− f(r(1))

= f(4, 2, 4)− f(1, 1/5, 1)

= 96 + 1− (3/5 + 1) = 96− 3

5
= 95 +

2

5
=

477

5
= 95.4
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M6: Surface Integrals

(a) Find the surface area of the part of the paraboloid z = 16− x2 − y2 which lies above
the xy-plane.

Solution: We want to compute
∫
S
1 dS =

∫∫
R
∥r⃗s × r⃗t∥ ds dt. We know from class

that if our surface is the graph of a function, then

∥r⃗s × r⃗t∥ =
√

1 + (fx)2 + (fy)2 =
√

1 + 4x2 + 4y2.

We’re integrating over the circle x2 + y2 = 16, so we should use polar coordinates. So
we get the integral∫ 4

0

∫ 2π

0

√
1 + 4r2r dθ dr =

∫ 4

0

2πr
√
1 + 4r2 dr

=
π

6
(1 + 4r2)3/2

∣∣∣4
0
=

π

6
(653/2 − 1).

(b) Compute the flux of the vector field F⃗ (x, y, z) = y⃗i + zk⃗ upwards through portion of
the cone z = 1−

√
x2 + y2 above the plane z = 0.

Solution: We can parametrize the cone with (r cos(t), r sin(t), 1−r), where 0 ≤ r ≤ 1
and 0 ≤ t ≤ 2π, and we get Jacobian term

r⃗r × r⃗t = (cos(t), sin(t),−1)× (−r sin(t), r cos(t), 0)

=

∣∣∣∣∣∣
i⃗ j⃗ k⃗

cos(t) sin(t) −1
−r sin(t) r cos(t) 0

∣∣∣∣∣∣ = r cos(t)⃗i+ r sin(t)⃗j + (r cos2 t+ r sin2 t)k⃗

= r cos(t)⃗i+ r sin(t)⃗j + rk⃗.

This is the right orientation since it is in fact pointed upwards for positive r.

Then we compute flux as∫
S

F⃗ · dS⃗ =

∫ 1

0

∫ 2π

0

(r sin(t), 0, 1− r) · (r cos(t), r sin(t), r) dt dr

=

∫ 1

0

∫ 2π

0

r2 sin(t) cos(t) + r − r2 dt dr∫ 1

0

1

2
r2 sin2(t) + rt− r2t

∣∣∣2π
0
dr∫ 1

0

2πr − 2πr2 dr = πr2 − 2π

3
r3
∣∣∣1
0
=

π

3
.

(c) Compute
∫∫

S
∇ × F⃗ · dS⃗ where F⃗ (x, y, z) = (z − y, x,−x) and S is the hemisphere

x2 + y2 + z2 = 4, z ≥ 0, oriented inwards towards the center of the hemisphere.
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Solution: Instead of parametrizing the spehre, we can just parametrize the boundary,
which is x2 + y2 = 4 and parametrized by (2 cos(t), 2 sin(t)). However, we see this is
the wrong orientation, so we instead use r⃗(t) = (2 cos(t),−2 sin(t)). (We could also
take (2 sin(t), 2 cos(t)), or various other options.)

Thus we compute∫∫
S

∇× F⃗ · dS⃗ =

∫
C

F⃗ · dR⃗

=

∫ 2π

0

(0 + 2 sin(t), 2 cos(t),−2 cos(t)) · (−2 sin(t),−2 cos(t), 0) dt

=

∫ 2π

0

−4 sin2(t)− 4 cos2(t) dt

=

∫ 2π

0

−4 dt = −8π.

S5: Vector Fields

(a) Which of the following is a flow line for F⃗ (x, y, z) = 2x⃗i+ zj⃗ − z2k⃗?

(i) r⃗(t) =

(
e2t, ln |t|, 1

t

)
(ii) s⃗(t) =

(
et,

1

t
, t

)

Solution: We compute

r⃗′(t) = 2e2t⃗i+
1

t
j⃗ − 1

t2
k⃗

F⃗ (r⃗(t)) = 2e2t⃗i+
1

t
j⃗ − 1

t2
k⃗

so r⃗(t) is a flow line.

But we also compute

s⃗′(t) = et⃗i− 1

t2
j⃗ + k⃗

F⃗ (s⃗(t)) = 2et⃗i+ t⃗j − t2k⃗

so s⃗(t) is not a flow line.

(b) Find a potential function for G⃗(x, y) = xy⃗i+ (x+ y)⃗j), or prove none exists.
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Solution: There are two approaches we could take here. One is to set up a system
of differential equations:

∂g

∂x
(x, y) = xy

∂g

∂y
(x, y) = x+ y

g(x, y) =
1

2
x2y + g1(y) g(x, y) = xy +

1

2
y2 + g2(x)

and that’s a contradiction, since xy isn’t a function of y and x2y isn’t a function of x.

But the simpler approach is just to compute the curl

∇×G(x, y) =

(
∂x+ y

∂x
− ∂xy

∂y

)
k⃗

= (1− x)k⃗ ̸= 0⃗.

Since the curl isn’t zero, this vector field isn’t conservative, and doesn’t have a potential.

(c) Find a potential field for F⃗ (x, y, z) = (y + z)⃗i+ (x+ z2)⃗j + (x+ 2yz)k⃗ or prove none
exists.

Solution: If F⃗ = ∇f , we must have

f(x, y, z) = xy + xz + g1(y, z)

f(x, y, z) = xy + yz2 + g2(x, z)

f(x, y, z) = xz + yz2 + g3(x, y)

We can satisfy all of these requirements with f(x, y, z) = xy + xz + yz2.
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