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1 Transcendental Functions

1.1 Invertible functions

Recall that a function is a rule that takes an input and assigns a specific output. Sometimes
we want to undo this process. This is in fact a natural question; “What do I have to do if
I want to get X” is a pretty common thought process. So our goal is: given a function f,

given f(x), can we find 27

Definition 1.1. If f is a function and (g o f)(z) = x for every x in the domain of f, then

we say ¢ is an inverse of f.

Example 1.2. o If f(z) = x then g(y) = vy is an inverse to f.
e If f(x) =5x + 3 then g(y) = (y — 3)/5 is an inverse to f.
o If f(x) = 2* then g(y) = ¥y is an inverse to f.

Graphically, the graph of f~! looks like the graph of f flipped across the line y = x,

which makes sense, since a point (z,y) on the graph of f should correspond to a point (y,z)

Top: x*. Bottom: /z. See how

they mirror each ohter.

on the graph of f~1.

The graph of z3 in solid blue, and the graph
of /x in dashed red. Notice they are

mirrored across the dotted black line y = x.

Remark 1.3. A given function f has at most one inverse—if f has an inverse at all, then
that means “for any y, find the x where f(z) =" is a well-defined rule.
If g is an inverse to f, then the domain of ¢ is the image of f and the domain of f is the

image of g.
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Computing f~!(y) is the same as solving the equation f(z) = y.

Unfortunately, we can’t always find these inverses. For instance, if you know that x? = 9,
you don’t know for sure what z is: it could be 3 or —3. Similarly, if you know sin(z) = 0,
then x could be nr for any integer n. The fundamental problem here is that there are some

outputs that are generated by more than one input.

Definition 1.4. A function f is I-1 or one-to-one (or injective) if, whenever f(a) = f(b),

we know that a = 0b.
Example 1.5. Functions which are 1-1:
o f(z) == If f(a) = f(b) then a = b by definition.
o f(x) =213 If f(a) = f(b) then a® = b?, and then (a/b)> =1s0a/b=1 and a = b.

o f(x) =+/x. If f(a) = f(b) then v/a = Vb so |a| = |b|. But a,b > 0 since they’re in the

domain of f, and thus a = b.

Figure 1.1: Some one-to-one functions: f(z) =z, f(z) = 23, f(x) = /z

Functions which are not 1-1:

o f(x) =212 since f(—1) = f(1).

o f(z) = |zl since f(=2) = f(2).

e sin(x), since sin(0) = sin(7).

o f(z) =3, since f(a) = f(b) = 3 for any real numbers a and b.

We might also want to think about what being one-to-one means for the graph of a

function. We can’t have two inputs with the same output, which means we can’t have the

same horizontal position at two different points.
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Figure 1.2: Some not one-to-one functions: f(z) = z?, f(z) = |z|, f(z) = sin(z), f(z) = 3.
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Proposition 1.6 (Horizontal Line Test). A function f is 1-1 if and only if any horizontal

line will intersect its graph in at most one point.

We can see this on the graphs above: all the one-to-one graphs pass the horizontal line
test, and all the not one-to-one graphs fail it. We can also interpret it in terms of the reflection
property: a function passing the horizontal line test is the same as its reflection/inverse
passing the vertical line test.

We already saw that every function with an inverse must be one-to-one, since otherwise
there’s not a unique answer to the inverse question. Less obvious is that being 1-1 is enough

to be invertible, but it’s true.

Proposition 1.7. If f is a 1-1 function with domain A and image B, then there is a function

f=t with domain B and image A which is an inverse to f.

Thus we know now exactly which functions have inverses. However, a lot of functions
we would like to invert are not one-to-one, which causes a problem. We can often solve this

problem by restricting the domain of a function to force it to become one-to-one.

Example 1.8.
We want /7 to be the inverse of 22, but it really
isn’t. We know that Va2 = x if x > 0, but if x is a neg-
ative number this doesn’t work. The function f(z) = z?

isn’t one-to-one, and thus isn’t invertible.

But consider the function f(x) = z? on the domain

[0,4+00). We can prove this function is one-to-one: if

f(a) = f(b) then a®> = b so a = +b. But both a,b > 0 .
so a = b. And in fact y/z is an inverse to the function =
f(x) = 2? defined on the domain [0, +00). oo

Example 1.9.

http://jaydaigle.net/teaching/courses/2026-spring-1232-13/ 3


http://jaydaigle.net/teaching/courses/2026-spring-1232-13/

Jay Daigle The George Washington University Math 1232: Single-Variable Calculus 11

We saw that sin(z) isn’t invertible. For instance,
sin(nm) = 0 for any whole number n.
But if we consider the function sin(zx) restricted to '

the domain [—m/2,7/2], it is in fact one-to-one. If we \/ \/ \‘/t \/

look at the unit circle, we see that as x varies from —7 /2

to m/2, the y coordinate on the unit circle is always
increasing, and so never repeats itself.

Thus we can find an inverse to the sine function on o k ‘

the domain [—m/2,7m/2]; we will discuss this further in

section [LAl

We can find the inverse to a function by writing the equation y = f(z) and solving for
x as a function of y. (Sometimes we instead write x = f(y) and solve for y as a function of
x; it depends on how we’re thinking of the function and what we plan to use it for.) This is

also a good way to prove that f is one-to-one.

Example 1.10. Let f(z) = z* with domain (—o0,0]. Then we have y = 2 = = = £¥/y.
But we know that < 0 so x = —/y, and thus g(y) = —/y is an inverse for f.

Example 1.11.
Take f(z) = 2® — z. This function is clearly not

one-to-one, since f(1) = f(0) = f(—1) = 0. But we can “

split it up into intervals where it is one-to-one. Looking

at the graph, it seems natural to split it up at the critical [\/
points. And this suggests we should use calculus to

study our inverse function problem.

1.1.1 Calculus of inverse functions

Now that we understand inverse functions as functions, we’d like to see what calculus can

tell us about them.

Proposition 1.12. If f is one-to-one and continuous at a, then f~' is continuous at f(a).

If f is one-to-one and continuous, then f~1 is continuous.

We'd really like to know about the derivatives of inverse functions. We can work out what
they are with some quick sketched arguments, and then can prove the answer rigorously once

we know what we're looking for.
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First, the argument by “it looks nice in the notation”: we can rephrase this theorem as

saying that

dy 1
= =
dx &

Second, if we already know that both functions are differentiable, we can use implicit differ-

entiation:

Writing x = f~!(a), or equivalently a = f(z), gives our statement.

Theorem 1.13 (Inverse Function Theorem). If f is a one-to-one differentiable function,
1 £—1 —1\/ _ 1

and f'(f~'(a)) # 0, then (f~')'(a) = T a)"

Proof. Set y = f~!(z) and b= f~!(a). Then

r—a TrT — Q
= lim y—b
v=b f(y) — f(b)
. 1
T I
y—>b
1 1

O

Graphically, this result tells us that the tangent line to f~!' at a point has a slope
reciprocal to the slope of the tangent line to f at that same point. Really, the tangent line

is just being reflected with the graph of the function.

Example 1.14. Let f(z) = 2" on [0, +00); then f~(z) = {/z. Our formula gives

1y B 1 B 1
(f7)(a) = f(f~Y(x)) o f/(wa»
_ 1 S S N (R VR i
a3/l na nt

Though at first this didn’t look like our original answer, it is the same as the formula we

had before.
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Figure 1.3: Left: the graph of f(x) = 23 + z with the tangent line at (z,y) = (1,2).
Right: the graph of f~!(y) with the tangent line at (y,z) = (2,1).

Example 1.15. Let f(z) = v/52% + 7. What is (f7!)'(3)?

Well, we have (f71)(3) = m We know that f'(z) = £(52% + 7)7%3 - 10z, and we
can work out that f(2) = /20 + 7 = 3 (by plugging in small integers until one works). Thus
f71(3) = 2, and so we have

1 3-9 27

(f_l),<3) - %(27)—2/3 .20 - 20 - %

1.2 The exponential and the logarithm

In this section we’ll look at a specific, extremely important example: the exponential function

e” = exp(x) and its inverse the logarithm.

1.2.1 The Exponential

By now we should be familiar with the function f(x) = z". It’s simple to define " when

1/n as the inverse

n is a positive integer, as x - x - --- - x. It’s now clear that we defined x
function to z™, with domain restricted to positive numbers in the case n is even and thus x™
is not one-to-one. But can we make sense of " where r is any real number? What would it
mean to write 2V2?

The answer would presumably be between 2 and 4. And also between 2'* and 2.
And between 24! and 2'42. In fact, this is how we will define 2V2. It turns out that

1.4 1.41 1.414 o1.4142
[ QL4 gldl oldl4 914142

there will be exactly one number greater than 2! . and less than

22’ 21.5’ 21.42’ 21.415’ 21.4143’ o
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And if this sounds like the approximation-by-zooming in we did with the intermediate
value theorem, you're right! If x is a rational or decimal approximation to the real number
r, then 2% should be an approximation to 2", and as x gets closer to r the approximation

should get better. Thus we get the following definition:

Definition 1.16. If r is any real number, and «a is a positive real number, we define a" =
lim,_,, a” for x varying over the rational numbers. We say that a is the base and r is the

exponent.

Remark 1.17. We can’t actually raise a negative real number to an irrational power. The limit
would vary over x with even denominator, and a” is not defined if x has even denominator

and a < 0.

Proposition 1.18. The ezponential function f,(x) = a® is well-defined for any r when

a > 0, and is continuous on all real numbers. Further, it satisfies the exponential laws:

o 0"tV = a%a¥

2001
160}
100}

501

Figure 1.4: The graphs of the exponential functions 2% and (1/2)*

Proposition 1.19. Ifa > 1, then lim, , . a® = +00 and lim,_, ., a® = 0.

If0 <a <1 then lim, o a® =0 and lim,_, ., a® = +00.

Proof. Both of these can be seen by considering cases where x is an integer. (Or by looking

at the graphs.)
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When a > 1 (say, if a = 2, as in figure , if x is very big then a” will be very big, and
if x is very negative then a” will be the reciprocal of a very large number, and thus close to
0.

When 0 < a < 1 (say if a = 1/2), if x is very big then a” will be very close to zero. And
if x is very negative then a” is the reciprocal of a number close to zero, but still positive,

and so a® will be very big. O

There is a number which we will see works much better as a base for the exponential
function than any other. This is the number

e = lim(1 + z)"/*.

z—0

It’s possible to prove that this limit exists, but not incredibly easy. It happens that e ~

2.71828. We often write exp for the exponential function with base e; that is, exp(x) = e*.

Remark 1.20. The number e is also called Euler’s number, and was discovered by Jacob
Bernoulli in the context of compound interest. (The number was named by Leonhard Euler
when he used it for logarithms.)

If your interest rate is r and it’s compounded n times a year, then the growth rate per
year is (1 + =)™, If the interest is “compounded continuously,” your money grows at a rate

equal to the limit of this expression as n goes to +oo—which is e”.

We'd like to compute the derivative of exp, and also of a” for a positive real number a.

This is a bit difficult to do directly, so instead we’re going to cheat.

1.2.2 Logarithms

The exponential function f(x) = a” is one-to-one, since if f(z) = f(y), then a® = a¥, which
means that ¢*™¥ = 1 and so z — y = 0. So ¢” must have an inverse function, and we can

give it a name.

Definition 1.21. The logarithmic function with base a, written log,, is the inverse function

to a®. It has domain (0, +00), and its image is all real numbers.

Thus if a > 0, we see that log,(a®) = z for every real z,and a'°%®) = z for every x > 0.

Remark 1.22. Just as there is a natural base e for the exponential, we also most often use e
as the base for a logarithm. In this case we call it the natural logarithm, denoted In.
In high school you probably learned that log(z) means the base-ten logarithm log,,(z).

In high school this is definitely true, and it’s sometimes true in fields like chemistry, but in
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other fields it is not true. (Historically, this was more true, since the base-ten logarithm is
useful for doing precise calculations by hand; today we use computers instead.)

In computer science, log(x) usually refers to a base-two logarithm, since binary is very
important. In math, log(z) usually refers to the natural logarithm. In this course I will try

to never write log(z) without specifying a base.
Example 1.23. e log;(9) = 2.
e log,(8) =3

e log,(1) =0 for any a > 0.

. . . . .
2 4 6 8 10

1L

2L

Figure 1.5: The graphs of the exponential functions log,(z) and log; ()

Proposition 1.24. Ifa > 1, then lim,,; log,(x) = +00 and lim, ¢+ log,(z) = —o0.

If 0 < a <1, then lim,_,, o log,(z) = —o0 and lim,_,o+ log,(z) = +0c0.

Proof. If x is a large number, this means that we’re looking for a number y that will make
a¥ = z large. Looking at the graph of the exponential function, this implies that y must be
large if @ > 1, then y must be very large, and if 0 < a < 1, then y must be very negative.
If x is very close to 0, we're looking for a y that will maek a¥ = x close to 0. If a > 1
this happens when y is very negative; if 0 < a < 1, this happens when y is very positive.
(We can’t compute a limit as + — —oo since the logarithm is not defined for negative

inputs.) O
The logarithm also has a number of properties corresponding to the exponential laws:

Proposition 1.25. Our exponential laws imply the following logarithm laws:
o log,(zy) = log,(x) + log,(y)
b loga(i) = loga(x) - loga(y>
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e log, (z") = rlog,(z) for any real number r.
Proof. e We can compute that
108 (@) Hog, (y) — log,(x) ;loga(y) — Ty = a8 (@y)
Thus the exponents must be the same, and log, () + log,(y) = log,(zy).

e We can compute that

1084 ()

108a(¥)—logq (y) — — qlo8a(/y)

T
aloga.(v) &

Thus the exponents must be the same, and log,(x) — log,(y) = log,(x/y).

e We can compute that

a7 198(@) = (glo%a(@))" = g7 = glowaa")|

Thus the exponents must be the same, and rlog, () log,(z").

Example 1.26. o In(a) + 1 In(b) = In(a) + In(b)*/? = In(av/b).

e Solve €°73% = 10. We have that 5 — 3x = In 10 and so x = L;lo.

Remark 1.27. These properties are actually historically why the logarithm was originally
important. Before calculators, people doing difficult computational work had to work by
hand. Adding five digit numbers is much, much easier than multiplying them. So engineers
would take the log of the numbers, add them together, and then exponentiate. This was all
done with the help of massive books called log tables that would tell you the logarithm of a
given number. Slide rules are essentially a way of making the log tables portable; but they

were superseded by pocket calculators.

There is one more important logarithmic formula, corresponding to the fourth exponential
law from proposition [1.1§]
Proposition 1.28 (change of base). For any positive number a # 1, we have log,(x) =
In(x)
In(a)
Proof. We use the same approach as in proposition [I.25] but now with the natural logarithm.
We see that

exp(log, () - In(a)) = (exp(In(a)))' ") = ¢5) = g,

so log,(z) - In(a) = In(z). O
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This allows us to convert logs in any base to logs in another base.

Example 1.29. What is log, 10? By the change of base formula, we have log,(10) = 219,
In10~ 2.3 and In2 ~ .7, so log, 10 ~ 2.3/.7 ~ 23/7.

1.3 Derivatives of exponentials and logs

Now we're ready to start computing derivatives. The derivative of exp is hard to do directly,

so we start with log.

Proposition 1.30. The function f(x) = log,(x) is differentiable, with derivative f'(z) =

%loga e.
Proof.
. fleth) - f(x)
o) —
fiz) = Jim h
— lim lOga(fE + h) — loga(w)
h—0 h
o log () /2)
h—0 h
= lim —log, (1 + ﬁ)
T ason ta

The next step is maybe a little bit of magic, but we want to simplify the inside of the
logarithm, so we define a new variable y = h/x. This implies that h = xy, and we can

replace the limit as h — 0 with a limit as y — 0, so we have

1 h
'(z) = lim — log, (1 + —
() = lim - log, (1+ )

h—0

1
= lim o log, (1 +y)

1y 1y
=~ limlog, ((1+y)"")

1 : 1/y
— Ttog, (tiy (145)").
But note that this entire limit
lim (1 + y)l/ Y
y—0
doesn’t depend on x, or on a, which makes it the same for any logarithmic derivative. So

we can just give it a name. In fact, we saw it before, at the end of section [1.2.1} This is the

number we call e, and is approximately equal to 2.7.
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Later on in the course in section we’ll see why this limit is a reasonable one to write

down, beyond the fact that it showed up randomly in this calculation. O

Corollary 1.31. If f(z) = log,(x) then f'(x) = -

Proof. By the change of base formula, log,(e) =
Corollary 1.32. In'(z) = %

Example 1.33. e Let f(2) = log,(z® + 1). We know that log/,(z) = —*—. So by the

zln(a)"
chain rule, we have
d
. log,(z® + 1) = logl, (z® + 1) - (z* + 1)’
x
1 9 3z?
= 3:6 =
(23 + 1) In(a) In(a)(z? + 1)

e Let g(x) = In(cos(z)). Then ¢'(z) = ;) - (—sin(z)) = — tan(x).

cos(z

(In section [1.4] we’ll see this gives us an antiderivative for tan(z).)

Example 1.34. The case where h(x) = In |z| is very important. If z > 0, then h(x) = In(z)
and so W' (z) = 1. If 2 < 0 then h(z) = In(—z), and then #'(z) = £+ - (—1) = 1. So we get
the “new” derivative rule:

1

In|z| = —.
T

This fact will be really important as we start using the logarithm to compute other
derivatives and integrals. It allows us to not worry about whether the function we’re taking
a logarithm of is positive or not; as long as it is non-zero, we can just throw it into In |z| and

the derivative will come out the same either way.

We can sometimes use logarithms and implicit differentiation to make difficult differen-

tiation problems easier, just as we use them to simplify difficult arithmetic problems.

Example 1.35 (Power Rule). In calculus 1 we stated the power rule %xr = rz" !, but only
really proved it for the case where r is a positive integer (and even that proof was probably
fuzzy). In section we used the inverse function theorem to prove it if » = 1/q for a

positive whole number ¢, but that really only takes us so far.
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But with logarithmic differentiation, we can prove the full version without much work.

We compute

y=x
In|y| = rln|z|
1dy 1
—_—— = 1r—
y dx x
dy _ y_ 2 _ o
— =r==r—=r1x
dz x x

Remark 1.36. When we compute logarithms of two sides of an equation, we often put both
sides in absolute values to ensure the logarithm is actually defined. In this example this isn’t

really necessary since we know z” must be positive, but in general it’s a good safety measure.

And finally, we can use the logarithmic derivatives to figure out the derivative of the

exponential, which we couldn’t compute directly.
Proposition 1.37. If f(x) = a® for a > 0, then f is differentiable and f'(z) = a”Ina.
Proof.

y=a"

In|y| = zIn|a]

19 _ g

ydr
d
i =ylna=a"Ina.
dx

Corollary 1.38. exp/(z) = exp(z). (Or we can write -Le* = ¢* .)
Example 1.39. o If f(z) = ¢® then f/(z) = @ . cos(z).
o If g(z) = 5°°*! then ¢/(z) = In(5)5""*+" - 2z.

We see that generally, %ey =e¥-y.

Remark 1.40. There’s another way to think about this process. You could notice that

a® = ev Ina S0 ; ;
v~ wln(a) _ ,zin(a) .1 — a*1
a e e n(a) = a”In(a).
o o (a) (a)
This involves the same basic ideas as the logarithmic approach I presented above, but the

implementation is slightly different.
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If you like this argument or find it more comfortable, go ahead and use it instead of the
logarithmic one. But I think the logarithmic version is much easier when the problems get

large and complicated.

Example 1.41. If h(x) = z* we have to be very careful—the obvious approaches don’t
actually work.

There are two ways you could naively try to answer this problem. The power rule,
which assumes the exponent is constant, would give h/(z)” = "z -2*"!. The recently-learned
exponential rule, which assumes the base is constant, would give h'(z)” = "2*-In(x). Neither
of these answers is correct, since the exponent and the base are both variable.

But we can solve this logarithmically:

y=x"

In|y| = xIn|z|

1d
——y:1n|x|+§=1n|x|+1
y dx x

d

%:ﬂ(lnmﬂ).

So h'(z) = (In|z| + 1)z”.

(If you prefer the exponential approach, you can write h(z) = e*™® and thus ' (z) =
@) (In(x) + 1) = 2%(In(z) + 1).)

But there is one extra cool thing I want to point out here. If you pretend the base is
constant you get z% - In(z). If you assume the exponent is constant, you get x - z°!, which
is the same thing as x*. If you just add these two formulas together—add up the effect of
changing the base, and changing the base—then you get

2 In(z) + 2% = 2°(In(z) + 1)
which is indeed the right answer.

We can also use this logarithmic derivative process to simplify derivatives that we could

do in other ways.
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¥4/ x4+ 1

Example 1.42. We wish to find the derivative of y =

(3x +2)°
3 1,
Iny = Zln(x) + éln(x +1)—5In(3z +2)
ldy 3 2x 3:5

ydr 4z 22242 3x+2

dy 3 n x 15
dx_y e 2241 3z +2
_I3/4\/:I)2+1(3 x 15 )

Br+2p \dr 241 32+2

1.4 Integrals involving logarithms and exponentials

Computing these derivative formulas also allows us to do some integrals we couldn’t do
before.

The obvious rule we’ve gotten is a rule for integrating exponential functions:
/ edr=¢e"+C.

Remark 1.43. We could, if we wanted to, treat this as the definition of e”: it’s the unique
(up to a constant) function that’s its own derivative. It satisfies the differential equation
y' =y. We'll talk more about this idea in section [3.3]

Example 1.44. o f03 e“dr =e"|3=e*— 1.
. f;n(g) edr=e"|"® =3-_1=2.

e Let’s compute f e3* dz. We can take u = 3x so dz = du/3, and we have

e We can approach f 3% dx in a couple of different ways. One approach is to think about
the rule that 237 = 3% In(3), and thus [ 3" dz = % + C.

The other is to do some algebraic “preprocessing”. We know that

3t — (eln(S))x _ 61:111(3).

Thus we're trying to compute

1 1
z1n(3) _ z1n(3) _ x
/e dx —1n<3)e +C —ln(3)3 +C.
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e Let’s compute [ 22e™ dz. We can take u = 2 so du = 322dz and we have
1 1 1
/x26x3 dr = / ge“ du = ge“ +C = §e$3 +C.

We learned about the exponential and logarithm, and we learned about the derivative of
the exponential and logarithm, so it seems reasonable to think we should now do the integral
of the exponential and the logarithm. But that doesn’t quite work! The derivative of exp
was exp, which allows us to integrate exp. But the derivative of In was 1/z; this doesn’t
actually allow us to integrate In because we don’t have it as the derivative of anything. We
will eventually find a way to integrate In, but that will take tools we don’t yet have.

But we do have a much more important integral rule here:
1
—dr=In|z|+C.
x

In praactice you can often write In(x), but it’s safer to write In |z|; whenever In(z) works they

mean the same thing, but In |z| still works if the denominator of your integrand is negative.

Remark 1.45. Recall that the power rule told us that

1
/x”dx: s
n+1
1

whenever n # 1, but we didn’t have a way of integrating x~".

This logarithm rule fills in
that gap.
In fact, an alternate path to discover the natural logarithm is to start by trying to find

an antiderivative for % Some sources will give the definition

1
ln(aj):/ —dt
Lt

and then define e to be the number that makes this integral equal to 1.

Example 1.46. e What is the area bounded by * = 2, = 3,y = 0 and xy = 17

Drawing the picture, we see we want to compute

/3 L 2[5 = In(3) — In(2) = In(3/2) ~ .41.

9 I

e What is [ xff;;if) dx? If we take u = 2* + 3z + 5 then du = 2x + 3dz, and we have

2¢ + 3 d
/Ldaﬁ:/—u:1n|u|—|—C:ln|x2+3x+5|—l—C.
22 +3x+5 u
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e What is f@dm?

This one looks tricky, but if we take u = In(z) so that du = %dx, we see this is

2 2
/udu:%+C’: (In | + C.

2

Example 1.47. For an even trickier setup, we are finally ready to compute [ tanz dx.

This isn’t obvious at all, but we can see that tanz = zgﬂ if we take u = cosx, then

sz’

du = —sin(x) dx, and we have
1
/tan(m) dr = /——du =—Infu|+ C = —1In|cos(z)| + C.
u

Example 1.48 (Recitation challenge). Some integrals here are really truly non-obvious.

dz
1+4+e**

The obvious thing to do is to set u = e”. Then du = e* dx so dr = du/e” = du/u. Then

Suppose we want to compute

we have
/d:c _/du/u_/ du
l+er ) 1+u ) uw(l4u)

Using techniques we’ll see in a couple weeks, we can work out that m = % — ULH, and
thus the integral is

du du

— - =lnlul —Inju+1]+C =1Inle’| —In|e” + 1| + C.

u  u+1

Alternatively, after some playing around, we can multiply the top and bottom by e™* to

get [ % dx. Then we take u = e~ with du = —e™* dx so we have

- _d
/ ¢ dm:/ u:—ln|u+1|—|—C’=—ln|e‘””+1|—|—C.
e *+1 u+1

It’s not at all obvious, but a good exercise, to check that these are the same answer!

1.5 Inverse Trigonometric Functions

We can invert some polynomials, and we can invert exponential functions. The other common
category of transcendental functions that we work with is the trigonometric functions, and
we’d like to find inverses to these as well.

As a straightforward question, we cannot invert the trigonometric functions because they
are all periodic, and thus not one-to-one. For instance, sin(0) = sin(7) = sin(27) = sin(nm)

for any integer n.
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However, sometimes a function is invertible if you restrict its domain enough, to avoid
including multiple inputs with the same output. (Often you can achieve this by looking only
between two critical points.)

In this section we make canonical domain choices for the trigonometric functions such

that they are invertible.
Definition 1.49. If —1 < z < 1, we define:
arcsin(x) = sin~*(z) = y where sin(y) = and —7/2 <y < 7/2.
The function arcsin has a domain of [—1,1] and a range of [—7/2,7/2].

1.0 1.6F

05r

L L
05 1.0

Figure 1.6: Left: A graph of sin(x) with the restricted domain highlighted
Right: a graph of arcsin(y)

Example 1.50. We can determine that arcsin(—+/3/2) = —7/3 since sin(—7/3) = —/3/2.
(Of course, sin(57/3) = —/3/2 as well, but we can ignore this solution because 57/3 > 7/2).
With more cleverness, we can calculate cos(arcsin(1/3)). Suppose § = arcsin(1/3). Then
0 is the angle of a triangle with opposite side of lenght 1 and hypotenuse of length 3; using the
Pythagorean theorem we determine that the other side has length V8 = 2¢/2. Since cos(0)
is the length of the adjacent side over the hypotenuse, we have cos(arcsin(1/3)) = 2v/2/3.

We can make similar definitions for inverse cosine and inverse tangent functions. We do

have to be careful about the precise domains and images.

Definition 1.51. If —1 < x < 1, we define
arccos(x) = cos ' (z) = y where cos(y) =z and 0 < y < 7.

This function has domain [—1,1] and range [0, 7].
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05}

1.0k

Figure 1.7: Left: A graph of cos(z) with the restricted domain highlighted
Right: a graph of arccos(y)

Definition 1.52. If x is a real number, we define:
arctan(z) = tan~'(z) = y where tan(y) =z and —7/2 <y < 7/2.

This function has domain (—o0,400) and image (—m/2,7/2). (Note the strict inequalities
< here, rather than the < we used for sine and cosine.)

Because the domain here is infinite, we want to think about the limits of this function
as well. We know that when x is close to 7/2 then tan(z) is very large; turning this around,

we see that lim,_, . arctan(z) = 7/2. similarly lim,_, ., arctan(z) = —m/2.

Figure 1.8: Left: A graph of tan(z) with the restricted domain highlighted
Right: a graph of arctan(y)

The trigonometric functions sin and cos and tan are all differentiable, so by the Inverse

Function Theorem [1.13} so are arcsin and arccos and arctan, at least most of the time.
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Proposition 1.53. We have the following derivative formulas:

d in(z) 1

— arcsin(r ) = ——

dx V1 — 2?2
—1

% arccos(x) == ﬁ
1

e arctan(z) = T

Proof. There are two approaches to proving these facts. One involves trigonometric identi-
ties, and the other involves thinking about triangles. They both involve implicit differentia-

tion.

Suppose y = arcsin(x). Then sin(y) = x and thus cos(y)j—g = 1. Then we have (% = Cosl(y).

From here, we have two different approaches. One is to note that cos(y) = /1 — sin®(y)

by the Pythagorean trigonometric identity, and since y = arcsin(x) we know that sin(y) = x.

Thus cos(y) = v/1 — 22, and so
dy 1 1

dr  cos(y) 1—a2
I find it easier to think about a different approach,
though. If y = arcsin(x), then y is the angle of a trian- i
gle where the opposite side has length x and the hypotenuse
has length 1. Then by the Pythagorean theorem, the third

side has length /1 — 22, so j
/T 22 r_-_
cos(y):%:\/l—:ﬁ. ,"'Xz

Note we got the same answer both ways, and they both involved basically the same facts;

the identity sin®(y) + cos?(y) = 1 holds precisely because of the triangle argument. Either
way you want to think of it is fine with me.

We can do the same with arccos(z). We set cos(y) = z, so

dy -1 1
dr  sin(y) 1 — 22
Working out the derivative of arctan is slightly trickier. We set tan(y) = x so sec2(y)j—g =
1, and thus we have % = cos®(y). We again have two approaches:

First, we can use the identity 1+ tan?(y) = sec?(y), which gives us

I
sec2(y) 1+ tan(y) 14 22

cos?(y) =
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since tan(y) = x.

Second, we can see that y is the angle of a tri- I+x2 X

angle with opposite side x and adjacent side 1, and
hence hypotenuse v/1 + 22. Then cos(y) = 1;2 j

1
14+22°

and so arctan’(r) = cos?(y) =

1

Example 1.54. e What is arcsin’(3/4)?

L _ 1 s/ : 1 — 1
We know that arcsin’(z) = 3 SO arcsin (3/4) is T e

e What is £ arctan(e”)?

Since arctan’(x) = we have

_1
1+x2>
T\ __ 1/ @ x\/ __ 1 T e:t
%arctan(e ) = arctan (6 ) . (6 ) = T(ex)Q e = m
e What is - arccos(z? + 2z + 3)?
—1
V1 — (2% + 2z + 3)?

Remark 1.55. There are also some other derivative formulas that almost no one cares about.

We get - (2x + 2).

—1 d 1 d —1
e arccot(x) = T e arcsec(zr) = T e arcesc(r) = oy

It’s actually a little annoying to define the ranges of these functions, and we mostly avoid

using them, but I list the formulas here for completeness.

1.5.1 Integrals with Inverse Trig Functions

These new derivative formulas give us new integral formulas. In practice we only really use

two:

/d—.:c = arcsin(x) + C
Vi—z?

d
/ N +x$2 = arctan(x) + C.

The second in particular comes up really often in certain integrals.
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dx
244"

There are a couple of ways to do this, but the most straightforward is to try to massage

Example 1.56. Let’s compute

it into something with a 1 on the bottom. So we can observe

1 14 1 1
w24+4 22/A+1 0 4(x)2)24+ 1

So we can take v = x/2 with du = dx/2, and get
/ dx _/1 1 p
214 ) a@eeEe1 ™
1 1
= [ - - 2d
/4u2+1 “

1 1
— - d
2/M+1“

1 1
=3 arctan(u) + C = 3 arctan(x/2) + C.

Example 1.57. Let’s compute [ = dr.
If the denominator were just v/1 — 22 this would be a simple u-substitution. But here
we need something a bit more.

We can take u = 22 so that du = 2z dx. Then

T du

T
——dr = | ———
/\/1—x4 /\/1—u22x
/1 1 J
= | —————=du
21 —u?

1 1
=3 arcsin(u) + C' = 5 arcsin(z?) + C.

Some sources will list the following integral rules for simplicity:

dx 1 T
-5 = — arctan (—) +C
a*+x a a

/d—x = arcsin (i> +C
Vva? — x? |al '

There’s one more technique we can find useful here, called completing the square. This
is something almost everyone learned in high school, and then promptly forgot a week later

when it was supplanted as a tool for solving equations by the quadratic formula.

Example 1.58. Let’s compute f#“;%
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We want the bottom to look like u* + 1. So first we complete the square to get rid of the
22 term. We want to find a number a so that 2% + 2z + a is a perfect square; we see that

2?2 +2z+ 1= (z+1)% So we have

/ dx B / dx B / dx
22420 +5 ) (@2+22+1)+4 ) (z+1)2+4

1 dzx

4z +1)/2)24+ 1
Now we set u = (z + 1)/2 so du = dz/2, and we get

/ dx _/12du_1/ du
24+2r+5 ) 4u2+1 2/ u2+1

= %arctan(u) +C = %arctan((x +1)/2)+C.

1.5.2 A note on hyperbolic trigonometric functions

There are some trigonometric-like functions called the hyperbolic trig functions. The basic

formulas are
et —e "t ef+e”*

S cosh(x) = 5

and then tanh, coth, sech, csch are defined as they are for regular trig functions. You can

sinh(z) =

wrok out the derivatives of these functions, and get what you’d maybe expect from the

names:

d . d . d 2
e sinh(z) = cosh(z) e cosh(z) = — sinh(x) e tanh(z) = sech”(x)

and so on. We can also define the inverse hyperbolic trigonometric functions and get some

familiar-looking formulas, which are occasionally useful:

d .. 1 d 1 d 1
%Slnh (l’)—\/ﬁ %Cosh (l’)—ﬁ Etanh (ZL’)—l_xQ.

However, none of these formulas are useful often enough for me to actually want to teach
them. It’s enough to know that these formulas do exist, and you can look them up if you
need to.

As a final note, these definitions don’t look at all like the regular trig functions, so it’s
surprising that all the other results work out the same. However, we’ll see at the very end
of the class that if you allow the imaginary number i = v/—1, then we can take

v _ iz ir | —ix
sin(x) = % cos(x) = %
Now we see the relationship between trig and hyperbolic trig functions: we get the hyperbolic

trig functions by just ignoring the i terms in these formulas.
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1.6 L’Hospital’s Rule

We're going to finish by talking about how we can compute limits of transcendental functions

like In and exp. Some of these turn out to be easy:

Example 1.59.

In(z)”"
m n(z) = 9 =0.
r—1 [[‘\1 1
But some of them do not. If we want to compute
In(z)”"
r—1 x — 1\0

we need some more tools.

«0»

0
(oo

27, There is a very powerful tool we can develop that only works for indeterminate forms;

In general, we only have a problem if our limit is an “indeterminate form”, like or

but since indeterminate forms are the only tricky ones, that limitation isn’t a real problem.

Theorem 1.60 (L’Hospital’s Rule). Suppose f and g are differentiable, and ¢'(x) # 0 near

a, except possibly at a. Suppose either lim, ,, f(z) = lim,_, g(x) = 0 or lim, ., f(x) =

lim,_,, g(x) = £oo. (In other words, the limit lim,_,, % is an indeterminate form). Then
flx) . f(z)

lim —% = lim
x—a g(m) rz—a g’(x)

iof the limit on the right exists.

Remark 1.61. This rule is named after Guillame Frangois Antoine, the Marquis de ’'Hospital.
(It was discovered by Johann Bernoulli, the brother of the Jacob Bernoulli who discovered
e.) Guillame spelled his name “I’Hospital”, but later French orthographic reforms shifted
the spelling to “I’'Hopital”. I follow the more traditional spelling that the Marquis himself
used, but you’ll see both used interchangeably.

Informal sketch. Let’s assume that f(a) = g(a) = 0 and ¢'(a) # 0. Then by linear approxi-
mation we know that f(z) ~ f(a) + f'(a)(z — a), and similarly g(a) =~ g(a) + ¢'(a)(x — a).

Then we have

f@) _ fo)+ f@)z—a) _ fla)le—a)

9@) ~ gl + e —a)  glae-a)
@ L P@e-a) e
Hag(e) e g@@—a)  gla)
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Proof. Now let’s prove this a bit more rigorously, but still staying in the case where f(a) =

g(a) =0, ¢’(a) # 0, and f" and ¢’ are continuous at a.

po f@) @) = fla)
z—a g JJ) z—a g(x) - g(a)
i Y @) = f(@) (@ = a)
w=a (g(x) — g(a))(z — a)
RS0
= @
f'(a) 1 f(x)

Example 1.62.

hm;p?—4x+3/0 g 242 1
=3 12 — 20 — 3\, e=320 —2 4 2
i 1 — cos(x) L'l sin(z) _ 0 0
z—0 cos(z) 1 '

50 sin(z)-,

Iz 1
ne” oy, YT
z—0 1

lim =
x—1  — 1\‘0

Sometimes we have to apply L’Hopital’s rule more than once to get the results we want.

tanz — 27" ., sec?(z) — 17°

lim 3 5
x—0 :L‘\O x—0 3:[,‘\0
, 2sec?(z) tan(x tanx tan(x 7
=L Jim (z) tan(z) = lim sec®(x) lim =1-lim tan(z)”
z—0 o6x z—0 z—0 31 z—0 31:\0
2
b 1
_LH g 56C (x) _1
x—0 3 3
633 - 1 - l'/(o ) 633 - 1/0 bl 61: 1
lim ———— =FH iy —LHim = ==
x—0 2$\O x—0 2 2

x—0 ,’1;'2\40

We can also use LL’Hopital’s rule to evaluate limits at infinity.

http://jaydaigle.net/teaching/courses/2026-spring-1232-13/ 25


http://jaydaigle.net/teaching/courses/2026-spring-1232-13/

Jay Daigle The George Washington University Math 1232: Single-Variable Calculus 11

Example 1.63.

2450 4+377 2x + 57
TTA T+ LH im LT

lim =
z—too ¢2 4+ T — 2\00 z—doo 2 + 7\00
b 2
=L lim =1
z—+o0 2
In(z)”"~ ; 1/x
im (z) =V im L =0
T—+00 'T\oo r—+00 1
lim & =UH iy &= +00
xr——+00 {L‘\OO r——+00 1

In fact, it’s not too hard to see, using L’Hopital’s Rule, that lim, , ;—: = 400 and

lim, 400 2 = 0.

We sometimes say that In(z) grows slower than any possible polynomial, and e® grows

faster.

Remember that L’Hopital’s rule only applies if we start with an indeterminate form.

Example 1.64.

lim sin(z)”" y cos(z) — 1o

z—m 1 —cos(z)\, * sin(z)

i sin(z)”" _ 0 _o

o= 1 —cos(z)\, 1—(-1)

A more dangerous example:
x 1 . 0 , . 1 0 7 x/(O

hme 3 * —LHlime 5 L'H me
z—0 :C\O z—0 3:C\ z—0 61’\0

You might think we should use L’Hopital’s rule again here; that would give lim,_, % =1/6.
But the top goes to 1 and the bottom goes to 0, so this is not an indeterminate form! The

true limit is +oo.

And sometimes L’Hopital’s rule doesn’t alwasy work the way we’d like it to, just “because

it doesn’t.”

Example 1.65.

0 0
’ T LH 1 | 2 +1
1m 2— = 1im = =
T—+00 T4 + ]‘\O r—>+00 Wt T—+00 x\o
X
) . 211 . X
=LH fjm X2 — fim .
z—+o0 1 a—+oo /22 + 1
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But here if we're clever we can observe that if the limit exists, then

x2

2
lim ———— ) = lim —— =1
r—4oo /2 + 1 z+o0 2 + 1
x
lim ——— = +£1.
z—too /2 + 1
Alternatively, we can just fall back on our techniques from Calculus 1:

T 1 1

lim ——— = lim = =1
votoo (/g2 41 wotoo /1 +1/22 V140

We can often use L’Hopital’s rule to compute limits of other indeterminate forms with

a bit of cleverness. Recall the “minor” indeterminate forms are 1%, 00 — 0o, 0%, 00°, 0 - co.
Products can obviously be rewritten as quotients, and sums or differences can often be
combined into something by collecting common denominators. Exponents can be turned

into ratios by means of logarithms.

Example 1.66. Our first example is lim, ./, sec(z) — tan(zx), which looks like “co — 00”.
This doesn’t require logarithms, but we need to do some pre-processing before we can use

L’Hospital’s Rule.

1 :
lim sec(z) — tan(x) = lim _ sin(@)
z—/2 e—m/2 \ cos(z)  cos(z)

. 1 —sin(z)”

= lim ————
e—m/2 cos(z)\,

0
1

_vH g —COS((I’) _o

/(O
z—m/2 — sin(z)\, -

Example 1.67. The example lim,_,qcot(2z)sin(6x) looks like “co - 07. Again, we don’t

need logarithms, but we do need to do some reorganization before we can use L’Hospital’s.

lim cot(22) sin(62) = lim S202) 08(20) _ 4 sin(G)”
20 =0 sin(2x) z—0 8in(22)\,
/(6
 lim 6 cos(6x) _3

20 2 €08 (22),

Example 1.68. Now let’s compute lim,_,; 2//0~%) which looks like “1°”. Since we have a
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complicated exponent, this begs for logarithms.

y = xl/(l—:c)
1 In(x)
1 = 1 =
n(y) = 1 () = 1
In(z)”™ . 1
lim In(y) = lim n(z) = lim [z =-1
T— rz—11 — T, z—1 —1
1
limy=e'==.
r—1 e

0»

Example 1.69. Let’s compute lim,_, o 2'/*, which looks like “co Again, we have a

complicated exponent, so again we use logarithms.

In(y) = éln(a:) = ln;x)

In(x)”™ |, 1
lim In(y) = lim %:LH lim ﬁ:o

r——+00 r——+00 x\oo r——+00

. _ 0_

Example 1.70. Finally, let’s compute lim,_,q+ xln@l)—l, which looks like “0°”.

Again we use logarithms.

1 In(x)
1 =—1 = —
n(y) In(z) — 1 n() In(z) — 1
/(OO
lim In(y) = lim (@) =UH Jim Yz =1
z—0t z—0+ 111(:13) — 1\00 z—0t 1/:)3

lim y =e' =e.
z—0t

Remark 1.71. The value of 0° computed directly is a good question to start bar fights at
math conferences. In most non-calculus contexts, the correct answer is 1, but in calculus
it depends on exactly which limit you're computing—which is exactly the definition of an
indeterminate form.

We can come back to this idea in multivariable calculus: we can say that

lim 2
(=,y)—(0,0)

is indeterminate, and depends on exactly how x and y are related. In example [1.70] we take

Yy = ﬁ, and then the limit becomes quite determinate—and definitely not equal to 1.
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