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5 Power Series and Taylor Series

In this section we want to use what we’ve done with series in order to accomplish things. In

particular, we can use series to define functions. And this allows us to work with a lot of

functions that we’ve talked about in the past, but didn’t have ways to compute. Functions

like ln(x) and arctan(x) are easy to say but hard to compute, and the same applies for things

like
∫
e−x2

dx.

With series, we can write down formulas for these things that allow us to get good

approximate answers to questions we care about. And as a bonus, we can replace a lot of

the calculus we’ve done before with much simpler operations.

5.1 Power Series

We want to start by figuring out how to build a function out of a series. There are a few

ways to do this, but the one we’ll be studying is called a power series.

(Another important tool is the Fourier series, which is important to any sort of digital

music or video. Unfortunately they’re a little more complicated and we won’t have time to

talk about them. But if you’re interested you can check out section 5.7, or I recommend this

video by 3Blue1Brown.)

Definition 5.1. A power series is a series

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + . . .

More generally, a power series centered at a is a series

∞∑
n=1

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + . . .

Because this series contains x, we can plug in a number for x and get a “regular” series,

which either converges to a number or diverges. Note we adopt the convention x0 = 1, and

(x− a)0 = 1, so that if we plug in x = a our sum is just c0.

We can think of a power series as an “infinitely long polynomial”; c0 is the constant term,

then c1 is the coefficient of x1, and in general cn is the coefficient of xn.

We’ve seen one important power series in disguise before.

Example 5.2. The series

1 + x+ x2 + x3 + · · · =
∞∑
n=0

xn
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is a geometric series with a = 1 and r = x. We know from our study of geometric series that

this converges if |x| < 1 and diverges if |x| ≥ 1, and that when it converges, the sum is 1
1−x

.

A first important step in understanding a power series is figuring out when it converges.

That is, if we plug in a value for x, does it converge to a real number, or does it diverge?

This is equivalent to asking for the domain of the function, an idea we’ll return to in section

5.2.

Example 5.3. For what x does
∑∞

n=0
xn

n!
converge?

Because of the nth powers, we use the ratio test. (Note that power series always have

nth powers and so you basically always use the ratio test). Since an = xn

n!
, we have

L = lim

∣∣∣∣an+1

an

∣∣∣∣ = lim

∣∣∣∣xn+1/(n+ 1)!

xn/n!

∣∣∣∣ = lim

∣∣∣∣ xn+1n!

(n+ 1)!xn

∣∣∣∣ = lim
∣∣∣x
n

∣∣∣ = 0.

Since L = 0 < 1 for any value of x, this series converges absolutely for any real number x.

Example 5.4. For what x does
∑∞

n=0 n(x− 2)n converge?

Again, we use the ratio test, as we almost always do for power series. We have an =

n(x− 2)n and an+1 = (n+ 1)(x− 2)n+1, so

L = lim
n→+∞

∣∣∣∣(n+ 1)(x− 2)n+1

n(x− 2)n

∣∣∣∣ = lim
n→+∞

∣∣∣∣n+ 1

n
(x− 2)

∣∣∣∣ = |x− 2|.

The ratio test says a series converges if L < 1, so this power series converges when |x−2| < 1.

For real numbers this is when 1 < x < 3.

When L > 1 the series diverges, so if x < 1 or x > 3 this series diverges. But the ratio

test doesn’t tell us what happens when L = 1, so we have to look at those cases separately.

When x = 3 then our series is

∞∑
n=0

n · 1n =
∞∑
n=0

n

which clearly diverges by the divergence test. Similarly, if x = 1 our series is

∞∑
n=0

n · (−1)n

which is an alternating series, but again diverges by the divergence test.

Some power series will converge for all x, like that last example. And some power series

will diverge for any x ̸= 0. But most of them look like this, and converge sometimes. But

that sometimes will always follow the same specific pattern.
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Theorem 5.5. If
∑∞

n=0 cn(x−a)n is a power series, then exactly one of the following things

occurs:

• The series converges only when x = a;

• The series converges for any real number x;

• There is a positive number R, called the radius of convergence, such that the power

series converges for |x−a| < R and diverges for |x−a| > R. Note this tells us nothing

about what happens when |x− a| = R; we have to check those cases individually.

Remark 5.6. This is another explanation for the language of “absolute” and “conditional”

convergence. A power series will converge everywhere on the interior of its interval of con-

vergence. It diverges everywhere outside the interval. On the boundary of the interval it

may or may not converge, depending on the specific boundary point; thus, on the boundary

it converges “conditionally.”

(This can all generalize to complex numbers in a really important and interesting way,

but we’re not going to engage with that much in this course. But in the complex case, you

can replace the word “interval” with “disk” in this remark.)

Definition 5.7. The open interval of radius r centered at c, is

(c− r, c+ r) = {x : |x− c| < r}

the set of all points of distance less than r from the center c.

The closed interval of radius r centered at c is

[c− r, c+ r] = {x : |x− c| ≤ r}

the set of all points of distance at most r from the center c.

Note the closed interval contains its boundary points and the open interval does not.

This is important!

Example 5.8. For what real x does
∑∞

n=0
(x−4)n

n
converge? What is the radius of conver-

gence?

Guess what? We use the ratio test! We have

L = lim

∣∣∣∣an+1

an

∣∣∣∣ = lim

∣∣∣∣(x− 4)n+1/(n+ 1)

(x− 4)n/n

∣∣∣∣ = lim

∣∣∣∣(x− 4)n

n+ 1

∣∣∣∣ = lim |x− 4|

so the power series converges for |x − 4| < 1, and thus the radius of convergence is 1. The

power series converges absolutely on (3,5).
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To find the real numbers where the series converges, we have to check 3 and 5 manually.

For x = 3 we get the series
∑ (−1)n

n
which converges by the Alternating Series Test; and for

x = 5 we get the series
∑

1
n
which diverges. Thus the series converges on [3,5) in the real

numbers.

Example 5.9 (recitation). The Bessel function (of order 0) is critical to any physics done in

cylindrical coordinates, and thus any physics that occurs on a cylinder. We saw it in section

3.3 as the solution to the differential equation x2y′′ + xy′ + x2y = 0, but it can also be given

by the power series:

J0(x) =
∞∑
n=0

(−1)nx2n

22n(n!)2
.

What is the radius and interval of convergence?

We use the ratio test. We have an = (−1)nx2n

22n(n!)2
, so

lim

∣∣∣∣an+1

an

∣∣∣∣ = lim

∣∣∣∣x2n+2/22n+2((n+ 1)!)2

x2n/22n(n!)2

∣∣∣∣
= lim

∣∣∣∣x2n+2

x2n

22n

22n+2

(n!)2

((n+ 1)!)2

∣∣∣∣
= lim

|x|2

4(n+ 1)2
= 0.

Thus the Bessel function of order 0 converges absolutely for all real numbers x. We say the

radius of convergence is ∞ and the interval is all reals, or (−∞,+∞).

Example 5.10. What is the radius and interval of convergence of

∞∑
n=1

(−2)nxn

√
n2 + n

?

Ratio test.

lim

∣∣∣∣∣(−2)n+1xn+1/
√

(n+ 1)2 + n+ 1

(−2)nxn/
√
n2 + n

∣∣∣∣∣ = lim 2|x|
√
n2 + 3n+ 2√

n2 + n
= 2|x|.

Thus by the ratio test the power series converges absolutely when 2|x| < 1, or in other words

when |x| < 1/2. The radius of convergence is 1/2 and it converges on the open interval

(−1/2, 1/2). Now we need to test endpoints.

When x = 1/2 then the series is ∑ (−1)n√
n2 + n

.
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This is an alternating series; the terms are decreasing and tend towards zero, so it converges.

When x = −1/2 then the series is
∑

1√
n2+n

. We use the limit comparison test, and see

that

lim
1/n

1/
√
n2 + n

= lim
√
1 + 1/n = 1

and thus
∑

1√
n2+n

has the same behavior as
∑

1
n
, and thus diverges.

So the real interval of convergence is (−1/2, 1/2].

Example 5.11 (recitation). What is the interval of convergence of

∞∑
n=0

n2(x− 1)n

7n+2
?

Using the ratio test, we have

lim

∣∣∣∣(n+ 1)2(x− 1)n+1/7n+3

n2(x− 1)n/7n+2

∣∣∣∣ = lim
|x− 1|

7

(n+ 1)2

n2
=

|x− 1|
7

.

So the series converges absolutely when |x− 1| < 7, and thus on the interval (−6,8). For the

full interval we need to test the endpoints, at x = −6 and x = 8.

When x = −6 we have ∑ n2(−7)n

7n+2
=
∑

(−1)n
n2

49
.

This is an alternating series, but the terms tend towards infinity and so by the divergence

test it diverges.

Similarly, when x = 8 we have ∑ n27n

7n+2
=
∑ n2

49
.

The terms tend towards infinity, so the series diverges by the divergence test.

Thus the real interval of convergence is (−6,8).

5.2 Power Series as Functions

Now that we understand how power series converge, we can see how to use them as as

functions. In general, if we have a power series
∑∞

n=0 cn(x − a)n, then we can define a

function by f(x) =
∑∞

n=0 cn(x− a)n.

The domain of the function will be the interval of convergence of the power series. If the

power series converges everywhere then the domain is all real numbers.

We already know how to express at least one function as a power series: by our geometric

series argument, we know that 1
1−x

=
∑∞

n=0 x
n for |x| < 1. We can use this fact to figure out

how to express some other functions as power series as well.
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Example 5.12. We can get new functions through composition, by plugging new formulas

into the formula we already have. Thus

1

1− x2
=

∞∑
n=0

(x2)n

1

1 + x5
=

1

1− (−x5)
=

∞∑
n=0

(−x5)n =
∑

(−1)nx5n.

Further, we can see that both of these must have the same interval of convergence as the

original power series. The series for 1
1−x

converges when −1 < x < 1, and thus the series

for 1
1−x2 will converge when −1 < x2 < 1, and this is precisely when −1 < x < 1. Similarly,

−x5 is in the interval (−1,1) exactly when x is.

Figure 5.1: Left: the truncated power series
∑10

n=0 x
n. Right: The truncated power series∑1000

n=0 x
n, which might as well be un-truncated

Remark 5.13. You may notice that 1
1−x

has a domain bigger than (−1,1). But the power

series only converges on that smaller interval. There’s something funky going on here because

power series convergence has this symmetry requirement; if it converges at 2, it must also

converge at −2. Since we have to have a divergence at x = 1, we must also get divergence

for x > 1 and x < −1, as we see in figure 5.1.

Sometimes we have multiple options.

Example 5.14. How can we express 1
x−3

as a power series? Since we want to write the

denominator as 1− y for some expression y, we factor out a −3:

1

x− 3
=

1

−3
· 1

1− x/3
= −1

3

∞∑
n=0

(x
3

)n
=

∞∑
n=0

−1

3n+1
xn.

We know this will converge when
∣∣x
3

∣∣ < 1, and thus when |x| < 3. So the interval of

convergence is (−3,3).
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Figure 5.2: Power series for 1
x−3

centered at 0.

Alternatively, we could write 1
x−3

= 1
1−(4−x)

. Then we have

1

x− 3
=

∞∑
n=0

(4− x)n =
∞∑
n=0

(−1)n(x− 4)n.

This is a power series with center 4, and it converges when |4 − x| < 1 so it has radius of

convergence 1.

Figure 5.3: Power series for 1
x−3

centered at 4. Notice how this power series has a totally

distinct interval of convergence: it centers on on the other side of the asymptote, but still

stops at that asymptote.

These are two different power series for the same function, but they’re completely differ-

ent. Each one has the largest radius of convergence it can without crossing the bad point at

x = 3, but since they start in different places, on opposite sides of the asymptote, they have

completely distinct intervals of convergence.

We can also do most basic algebra with power series.

Example 5.15. How can we express x
1−x

as a power series? This is just x · 1
1−x

and so

x

1− x
= x

∞∑
n=0

xn =
∞∑
n=0

xn+1.

The interval of convergence is again (−1,1).
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5.2.1 Calculus of power series

Recall that possibly the easiest functions for us to work with when we do calculus (or, indeed,

almost anything else) are polynomials. It’s easy to differentiate or integrate polynomials,

and to calculate their outputs. The nice thing about power series is that they’re basically

fake polynomials, so they’re almost as good.

Taking a derivative or integral of a single term of a power series is something we already

know how to do, since each term is a polynomial (or, technically, a monomial). So for

instance, we have

d

dx
cn(x− a)n = cn · n(x− a)n−1∫

cn(x− a)n dx = cn
(x− a)n+1

n+ 1
+ C.

That means that we can do calculus on polynomials easily, just by working on each term.

And it turns out the same thing works for power series.

Proposition 5.16. If
∑

cn(x − a)n has a radius of convergence R > 0, then the function

defined by f(x) =
∑

cn(x− a)n is differentiable on (a−R, a+R), and we have

• f ′(x) =
∑∞

n=0 cn
d
dx
((x− a)n) =

∑
n=0 ncn(x− a)n−1.

•
∫
f(x) dx =

∑∞
n=0

(∫
cn(x− a)n dx

)
=
∑∞

n=0 cn
(x−a)n+1

n+1
+ C.

Remark 5.17. This proposition tells us that after taking the derivative or integral, our power

series still has the same radius of convergence. However, convergence at the endpoints may

change.

Now that we have this extra tool we can find power series for more functions.

Example 5.18. Since 1
1−x

=
∑∞

n=0 x
n, we can differentiate both sides. The derivative of the

left hand side is
d

dx
(1− x)−1 = −1(1− x)−2 · (−1) =

1

(1− x)2

and so
1

(1− x)2
=

∞∑
n=1

nxn−1.

Note that we’ve dropped the n = 0 term because the derivative of x0 is 0, and writing 0 ·x−1

would be silly.
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Also note that we have
∞∑
n=1

nxn−1 = 1 + 2x+ 3x2 + 4x3 + · · · =
∞∑
n=0

(n+ 1)xn

so this is still a proper power series. For instance, we can use the ratio test to double-check

that the radius of convergence is still R = 1.

Example 5.19. A subtler and more clever question: can we find a power series expression

for ln(1 + x)?

We know that ln(1 + x) =
∫

1
1+x

dx. We also know that 1
1+x

=
∑∞

n=0(−x)n. Integrating

gives us that

ln(1 + x) =
∞∑
n=0

(−x)n+1

n+ 1
· (−1) + C

=
∞∑
n=0

(−1)n
xn+1

n+ 1
+ C

=
∞∑
n=1

(−1)n−1x
n

n
+ C.

To find the constant C we compute ln(1 + 0), since plugging 0 in on the right hand side

will just yield C. (If this reminds you of what we did in section 3.3.5 to solve differential

equations, good!) We know that ln(1) = 0, so C = 0, and we have

ln(1 + x) =
∞∑
n=1

(−1)n−1x
n

n
.

The radius of convergence is still 1; we can see this using the ratio test or by recalling that

our original power series has radius of convergence 1.

As with the geometric series, the radius of convergence can’t possibly be larger than 1,

since the function ln(1 + x) has an asymptote at x = −1, as we see in figure 5.4.

In passing, this justifies my repeated claims that
∑∞

n=1
(−1)n−1

n
= ln(2), by plugging x = 1

into this formula.

Example 5.20. Find a power series for arctan x.

Again, we note that arctanx =
∫

1
1+x2 dx, and we know that 1

1+x2 =
∑∞

n=0(−x2)n. Inte-

grating gives

arctanx =
∞∑
n=0

∫
(−1)nx2n dx+ C

=
∞∑
n=0

(−1)n
x2n+1

2n+ 1
+ C.
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Figure 5.4: Left: the truncated power series
∑10

n=1(−1)n−1 xn

n
. Right: The truncated power

series
∑1000

n=1 (−1)n−1 xn

n
, which might as well be un-truncated

To find C we calculate C = arctan(0) = 0, so we have

arctanx =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
.

Again the radius of convergence is 1, as we see in figure 5.5. However, this time nothing

about the function arctan(x) obviously forces this radius of convergence on us; it’s purely

an artifact of the way we set this up.

Figure 5.5: Left: the truncated power series
∑10

n=0(−1)n x2n+1

2n+1

∑10
n=1(−1)n−1 xn

n
. Right: The

truncated power series
∑500

n=0(−1)n x2n+1

2n+1
, which might as well be un-truncated

Finally, these power series representations allow us to compute integrals that we either

couldn’t do or couldn’t do easily before. We’ll see more of this soon.

Example 5.21 (recitation). What is
∫

1
1+x6 ?

We could use a partial fractions decomposition, if we know that 1 + x6 = (1 + x2)(x2 −
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√
3x+ 1)(x2 +

√
3x+ 1), but that’s really unpleasant. Instead, we write

1

1 + x6
=

∞∑
n=0

(−x6)n =
∞∑
n=0

(−1)nx6n

∫
1

1 + x6
dx =

∞∑
n=0

∫
(−1)nx6n dx =

∞∑
n=0

(−1)n
x6n+1

6n+ 1
+ C.

This again converges for |x| < 1.

Example 5.22 (recitation). What is
∫ 4

3
1

1−(x−4)3
dx?

Again we have

1

1− (x− 4)3
=

∞∑
n=0

(x− 4)3n

∫ 4

3

1

1− (x− 4)3
dx =

∞∑
n=0

∫
(x− 4)2n dx

∣∣∣∣∣
4

3

=
∞∑
n=0

(x− 4)3n+1

3n+ 1

∣∣∣∣∣
4

3

= 0−
∞∑
n=0

(−1)3n+1

3n+ 1

which converges for any n by the Alternating Series Test.

There are many other functions we wish we could integrate but can’t; the most prominent

example is e−x2
, but there are others. Unfortunately, we don’t have a power series for e−x2

,

and don’t have an obvious way of obtaining power series for functions except by luck. But

we can fix that.

5.3 Taylor Series

In the previous section we found power series for a number of familiar functions by starting

with the power series for 1
1−x

, and then using clever algebraic or calculus manipulations to

obtain forms for our new functions. But we’d like a more systematic way of approaching the

problem, that doesn’t rely on cleverness and luck.

Example 5.23. One particular function we’d like a power series representation for is ex.

Let’s be optimistic and assume it has one, so we can write

ex =
∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + . . .

http://jaydaigle.net/teaching/courses/2026-spring-1232-13/ 124

http://jaydaigle.net/teaching/courses/2026-spring-1232-13/


Jay Daigle The George Washington University Math 1232: Single-Variable Calculus II

for some collection of constants ci.

As we saw in section 5.2, we can evaluate the power series at 0 (plug in x = 0) pretty

easily. Plugging in x = 0 on the right hand side gives c0+0+0+ · · · = c0, and so c0 = e0 = 1.

But how can we determine the other constants?

Let’s take the derivative of both sides. We get

ex =
∞∑
n=0

ncnx
n−1 = c1 + 2c2x+ 3c3x

2 + . . .

and plugging in 0 for both sides gives c1 = e0 = 1. We can repeat the process; taking more

derivatives gives

ex = 2c2 + 6c3x+ 12c4x
2 + . . .

ex = 6c3 + 24c4x+ 60c5x
2 + . . .

and thus 2c2 = 1, 6c3 = 1, and thus c2 = 1
2
and c3 = 1

6
. Continuing this pattern, and more

generally we have cn = 1
n!
. Thus if we can represent ex as a power series centered at 0, the

power series must be

ex =
∞∑
n=0

xn

n!
.

We can generalize this to any function:

Theorem 5.24. If f has a power series representation centered at a, that is, if

f(x) =
∞∑
n=0

cn(x− a)n

for some sequence of constants cn, then cn =
f (n)(x)

n!
for each n, where f (n)(x) is the nth

derivative of f at x.

Definition 5.25. We define the Taylor series of f centered at a to be

Tf (x,a) =
∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a)(x− a) +

f ′′(a)

2
(x− a)2 + . . .

We sometimes say a Taylor series centered at 0 is a Maclaurin series, which we write

Tf (x,0) = Tf (x) =
∞∑
n=0

f (n)(0)

n!
xn = f(0) + f ′(0)x+

f ′′(0)

2
x2 +

f ′′′(0)

6
x3 + . . .
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Remark 5.26. It is not true that every function can be represented as a power series. If

a function is not infinitely differentiable (“smooth”) then it clearly doesn’t have a power

series, since all power series are smooth. Thus |x| doesn’t have a power series expansion that

includes 0.

Not even all smooth functions have power series; we’ll see an example in section 5.6.1.

Functions that can be represented by power series are called “analytic.”

But if a function can be represented by a power series, that power series is the Taylor

series. Our next goal is to figure out when a function is equal to its Taylor series.

Definition 5.27. We call the truncated Taylor series the nth Taylor polynomial of f centered

at a.

TF,k(x,a) = Tk(x,a) =
k∑

n=0

f (n)(a)

n!
(x− a)n.

Remark 5.28. You might notice that T0(x,a) = f(a), and T1(x,a) = f(a)+f ′(a)(x−a), which

might look familiar from calculus 1 as the linear approximation to f near a. The Taylor

polynomials in general are an expansion of this concept; T1 is the best linear approximation

we can make to f , and T2 is the best quadratic appoximation we can make.

In computation and in modelling we often replace a function by its Taylor polynomial to

make our lives easier. We’ll use this for some applications later on in section 5.5.

The Taylor polynomials are not the same thing as our original function; they’re approx-

imations. so we can ask how much error this approximation has.

Definition 5.29. We define Rk(x,a) = f(x)−Tk(x,a) to be the kth remainder of the Taylor

series.

Now we can reframe our question—when is the Taylor series is equal to the original

function?—by asking when the Taylor polynomials converge to the function. So f = Tf (x,a)

on some interval (b,c) if and only if limk→+∞ Rk(x,a) = 0 for any x in (b,c).

Fortunately there’s a way to check this, related to the Mean Value Theorem. Recall from

Calculus 1 that, if f is differentiable on an interval [a,x], then there is a z in that interval

such that

f ′(z)(x− a) = f(x)− f(a) = R0(x,a).

We can extend this result to include more derivatives, and get:

Proposition 5.30. If f has enough derivatives on an interval I containing a, then for any

x in I, there is a number z between x and a such that

Rk(x,a) =
f (k+1)(z)

(k + 1)!
(x− a)k+1.
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Note that if we take n = 0 then we get the Mean Value Theorem.

Example 5.31. We’d like to show that the Taylor series for ex we computed earlier actually

gives us ex. We have f (k+1)(z) = ez, so Rk(x,0) =
ez

(k+1)!
xk+1. Note that z depends on n, and

z is between 0 and x, so assuming x is positive, we have

Rk(x,0) =
ez

(k + 1)!
xk+1 =

xk+1

(k + 1)!
ez ≤ xk+1

(k + 1)!
ex.

But as n goes to infinity, ex doesn’t change, and xk+1

(k+1)!
→ 0. So limk→+∞ Rk(x,0) = 0, and

ex is equal to its Taylor series for x > 0.

If x is negative, that argument doesn’t quite work. But in that case we have ez < 1 so

we get

Rk(x,0) =
ez

(k + 1)!
xk+1 =

xk+1

(k + 1)!
ez ≤ xk+1

(k + 1)!
→ 0.

Thus ex is equal to its Taylor series for all x, and we can write

ex =
∞∑
n=0

xn

n!

and in particular

e =
∞∑
n=0

1

n!
= 1 + 1 +

1

2
+

1

6
+ . . . .

Example 5.32 (Recitation). We can also ask for the Taylor series of ex centered at another

number, say a = 1. Each derivative is still ex and thus e3, and so we have

T (x,1) =
∞∑
n=0

e1
(x− 1)n

n!
.

Is this actually equal to ex? We compute

Rk(x,1) =
ez

(k + 1)!
(x− 1)k+1

which, for any fixed x and |z| ≤ x goes to 0 as k goes to infinity. So we have

ex =
∞∑
n=0

e1
(x− 1)n

n!
.

This is superficially different from the previous power series, but clearly the two series

give the same function. The series centered at zero will be more efficient for computing with

inputs near zero, and the series centered at 1 will be more efficient for inputs near 1.
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This example also tells us another nice fact about ex. Notice that if I plug 1 into this

power series, I get e times what I would have gotten by plugging zero into the other power

series. In general I can compute that

Tx,a =
∞∑
n=0

ea
(x− a)n

n!
= ea

∞∑
n=0

(x− a)n

n!

which tells me that ex = ea · ex−a, which is the basic arithmetic rule for multiplying expo-

nentials.

In a much crueler course, I could define ex by its Taylor series, and then prove (or ask

you to prove!) the rule that ea+b = eaeb by doing these sorts of algebraic manipulations.

Example 5.33. Can we find a power series for f(x) = xex centered at 0? The obvious

approach is to compute the Taylor series. We have

f(x) = xex f(0) = 0

f ′(x) = ex + xex f ′(0) = 1

f ′′(x) = 2ex + xex f ′′(0) = 2

...
...

f (n)(x) = nex + xex f (n)(0) = n.

Thus the Taylor series formula gives us

∞∑
n=0

n

n!
xn.

In order to remember that the constant term c0 here is zero, I’ll change the indexing to be

from n = 1, and then I can see that n
n!

= 1
(n−1)!

, and I get

∞∑
n=1

1

(n− 1)!
xn.

But there’s another, easier way we could approach this. We already have a power series

for ex, so we can compute

ex =
∞∑
n=0

1

n!
xn

xex = x
∞∑
n=0

1

n!
xn

=
∞∑
n=0

1

n!
xn+1.
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And these are in fact two ways of writing the same series, after we change the indexing

around.

Example 5.34. Can we find a power series for g(x) = ex
2
?

Technically we can do this with the direct Taylor series method, but that’s actually quite

annoying. We can compute as before

g(x) = ex
2

g(0) = 1

g′(x) = 2xex
2

g′(0) = 0

g′′(x) = 2ex
2

+ 4x2ex
2

g′′(0) = 2

g′′′(x) = 12xex
2

+ 8x3ex
2

g′′′(0) = 0

g(4)(x) = 12ex
2

+ 48x2ex
2

+ 16x4ex
2

g(4)(0) = 12

and we can kind of see a pattern here, but figuring out exactly what it is will be tricky and

proving it works will be even trickier.

But there is, again, an easier way.

ex =
∞∑
n=0

1

n!
xn

ex
2

=
∞∑
n=0

1

n!
(x2)n

=
∞∑
n=0

1

n!
x2n.

5.4 Computing Taylor Series

We want to compute some more Taylor series, both to get practice at doing the computation,

and to have some more Taylor series to work with. We’ll warm up with some simple examples.

Example 5.35. We can compute the Taylor series of a polynomial. In fact, if we take the

series centered at 0, we get back exactly what we started with.

Let f(x) = x3 +3x2 +1. Then we have f ′(x) = 3x2 +6x, f ′′(x) = 6x+6, f ′′′(x) = 6, and

f (n)(x) = 0 for n > 3. Thus the Taylor series centered at 0 is

Tf (x,0) = f(0) + f ′(0)x+
f ′′(0)

2
x2 +

f ′′′(0)

6
x3

= 1 + 0x+
6

2
x2 +

6

6
x3 = 1 + 3x2 + x3.

Hopefully this is what you expected.
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Probably more useful is the ability to write the Taylor series centered at a different point.

If we take the Taylor series centered at 2, for instance, we have

Tf (x,2) = f(2) + f ′(2)x+
f ′′(2)

2
x2 +

f ′′′(2)

6

= 21 + 24(x− 2) +
18

2
(x− 2)2 +

6

6
(x− 2)3

= 21 + 24(x− 2) + 9(x− 2)2 + (x− 2)3.

If you multiply this out you will get your original polynomial back; but sometimes it is very

useful to have a polynomial expressed in terms of x− 2, say, instead of in terms of x.

Example 5.36. Let’s consider the function ln x. (We’ve computed a Taylor series for ln(1+

x) but that’s a bit awkward).

If f(x) = ln x then we have

f ′(x) =
1

x
f ′′(x) =

−1

x2

f ′′′(x) =
2

x3
f (4)(x) =

−6

x4

. . .

f (n)(x) =
(−1)n−1(n− 1)!

xn

Thus if we wish to compute the Taylor series centered at 1, we have

ln(x) =
∞∑
n=0

f (n)(1)

n!
(x− 1)n

= 0 +
∞∑
n=1

(−1)n−1(n− 1)!

n!1n
(x− 1)n

=
∞∑
n=1

(−1)n−1

n
(x− 1)n

This should look familiar (see figure 5.6); it’s exactly the same thing as our previous series

ln(1 + x) =
∑∞

n=1
(−1)n−1

n
xn, replacing x with x− 1.

But wait, there’s more! If we want to compute log(5), for instance, that power series

doesn’t work. But we can pick a new center for the power series and compute things there,

and these power series will have different intervals of convergence, as we see in figure 5.7.
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Figure 5.6: Graphs of the Taylor polynomials for ln(x) centered at 1, with 10 and 100 terms.

Compare to the pictures in figure 5.4.

log(x) =
∞∑
n=0

f (n)(5)

n!
(x− 5)n

= log(5) +
∞∑
n=1

(−1)n−1(n− 1)!

n!5n
(x− 5)n

= log(5) +
∞∑
n=1

(−1)n−1

n5n
(x− 5)n.

Figure 5.7: Graphs of the Taylor polynomials for ln(x) centered at 5, with 10 and 100 terms.

An application of the ratio test will show that this has radius of convergence 5, and we

can see it converges conditionally on the boundary; in particular it will converge at 10 (by

the alternating series test) and diverge at 0 (where it will just be the harmonic series). This

behavior is in fact what we should expect: we know the series won’t converge at 0 since

log(0) is undefined, but we expect the series to converge everywhere it “can”.

5.4.1 Trigonometry and Exponentials

While the most mysterious function we’ve been dealing with is ex, we also would like to be

able to compute sinx and cos x.
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First we’ll compute the Maclaurin series for sinx. Computing a few derivatives gives us

d

dx
sin(x) = cos(x)

d

dx
sin(x) |0 = 1

d2

dx2
sin(x) = − sin(x)

d2

dx2
sin(x) |0 = 0

d3

dx3
sin(x) = − cos(x)

d3

dx3
sin(x) |0 = −1

d4

dx4
sin(x) = sin(x)

d4

dx4
sin(x) |0 = 0

And since this pattern will repeate, we get that d2n

dx2n sinx = (−1)n sinx, and d2n+1

dx2n+1 (sinx) =

(−1)n cosx. Since sin(0) = 0 and cos(0) = 1, the Maclaurin series is

T (x,0) = 0 + x− 0− x3

3!
+ 0 +

x5

5!
− 0− x7

7!
+ . . . =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

Computing the remainder gives

R2n(x,0) =
(−1)n cos z

(2n+ 1)!
x2n+1

|R2n(x,0)| =
∣∣∣∣(−1)n cos z

(2n+ 1)!
x2n+1

∣∣∣∣ ≤ x2n+1

(2n+ 1)!

since | cos z| ≤ 1, and this tends to zero as n tends to infinity. So sin x is equal to its

Maclaurin series, and we have

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ . . .

Figure 5.8: Graphs of the Taylor polynomials for sin(x) centered at 0, with 5 and 11 terms.

Dashed asymptotes at multiples of 2π. Notice how quickly this converges near zero!

We also want a Maclaurin series for cosx. We could compute it as we did before, but
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there’s an easier way; cosx = (sinx)′, so

cosx =
∞∑
n=0

(−1)n
(2n+ 1)x2n

(2n+ 1)!

=
∞∑
n=0

(−1)n
x2n

2n!

= 1− x2

2
+

x4

4
− x6

6
+ . . .

Figure 5.9: Graphs of the Taylor polynomials for sin(x) centered at 0, with 5 and 11 terms.

Dashed asymptotes at multiples of 2π. Notice how quickly this converges near zero!

Though this is less important, sometimes we want to know things like the Taylor series

for x sinx. Again we’d rather not do this by computing derivatives, because that’s hard.

But we can find this Taylor series by doing power series algebra:

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ . . .

x sinx =
∞∑
n=0

(−1)n
x2n+2

(2n+ 1)!
= x2 − x4

3!
+

x6

5!
− x8

7!
+ . . .
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5.4.2 The Binomial Series

Another important and widely applicable example is the binomial series, which is the Maclau-

rin series expansion for f(x) = (1 + x)α. We can calculuate that

f(x) = (1 + x)α f(0) = 1

f ′(x) = α(1 + x)α−1 f ′(0) = α

f ′′′(x) = α(α− 1)(1 + x)α−2 f ′′(0) = α(α− 1)

f ′′′(x) = α(α− 1)(α− 2)(1 + x)α−3 f ′′′(0) = α(α− 1)(α− 2)

...
...

...
...

f (n)(x) = α(α− 1) . . . (α− n+ 1)(1 + x)α−n f (n)(0) = α(α− 1) . . . (α− n+ 1)

=
α!

(α− n)!
(1 + x)α−n =

α!

(α− n)!

So we get the formula

(1 + x)α =
∞∑
n=0

α!

(α− n)!n!
xn.

We sometimes use the notation (
α

n

)
=

α!

(α− n)!n!

which we read “α choose n”; if α is a positive integer this represents the number of ways to

choose n things out of α choices. Then we can write

(1 + x)α =
∞∑
n=0

(
α

n

)
xn =

∞∑
n=0

α(α− 1) . . . (α− n+ 1)

n!
xn.

By the ratio test, this power series converges when |x| < 1.

This series is called the binomial series, and is used very, very often to do numerical

approximations, and especially in physics applications.

Notice that if α is a positive integer this is just the usual polynomial expansion. If α is

an integer then
(

α
α+1

)
= 0, and so we get formulas like

(1 + x)5 =
5∑

n=0

(
5

n

)
xn = 1 + 5x+ 10x2 + 10x3 + 5x4 + x5.

Example 5.37. What is (3 + x)3? We need to get a formula that looks like (1 + y)3, and

factoring out a 33 gives us

(3 + x)3 = 33(1 + x/3)3.
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Then the binomial series gives us

(3 + x)3 = 27 · (1 + x/3)3

= 27
∞∑
n=0

(
3

n

)(x
3

)n
= 27

(
1 + 3 · x

3
+ 3 · x

2

9
+

x3

27

)
= 27 + 27x+ 9x2 + x3.

Example 5.38. What is 3
√
1 + x2? This is the binomial series with α = 1/3. So the Binomial

Series tells us:

3
√
1 + x2 =

∞∑
n=0

(
1/3

n

)
x2n

= 1 +
1

3
x2 +

(1/3)(−2/3)

2!
x4 +

(1/3)(−2/3)(−5/3)

3!
x6 + . . .

= 1 +
x2

3
− x4

9
+

5x6

81
− . . .

Figure 5.10: Graphs of the Taylor polynomials for 3
√
1 + x2 centered at 0, with 20 and 200

terms. Again, notice how quickly this converges.

Thus we can estimate, for small x, that 3
√
1 + x2 ≈ 1 + x2

3
. We would approximate that

3
√
1.3 ≈ 1 + .09

3
= 1.03. In fact Mathematica tells us that 3

√
1.3 ≈ 1.09139, so that’s pretty

good.

5.5 Applications of Taylor Series

Now that we have power series representations of a bunch of functions, we can use them

to calculate limits and integrals and other messy calculus things, and in general we can use

them to do lots of cool things.
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Figure 5.11: Graphs of the quadratic Taylor polynomial for 3
√
1 + x2 centered at 0, which is

just 1 + x2/3. That’s already enough to get us a really good approximation.

5.5.1 Calculating constants

This is quick, but important. We all know that π ≈ 3.14 and e ≈ 2.7, but where do these

numbers come from?

I’ve mentioned before that

e = e1 =
∞∑
n=0

1

n!

Summing the first five terms, though n = 4, gives

e ≈ 1 + 1 +
1

2
+

1

6
+

1

24
=

65

24
≈ 2.708

summing the first nine terms gives 109601
40320

≈ 2.71828.

Slightly trickier is finding π. The simplest way we have to do this is observing that

arctan(1) = π/4, and then computing

π = 4arctan(1) = 4
∞∑
n=0

(−1)n
1

2n+ 1
.

This series converges very slowly. Summing through n = 10 gives π ≈ 3.23232; summing

through n = 100 gives π ≈ 3.15149. After a few hundred terms we see 3.14 show up, and at

a thousand we get π ≈ 3.14259.

There are much better series for calculating numerical approximations of π. But this one

was good enough for a particularly stubborn gentleman named Abraham Sharp to compute

π to 71 digits in 1699. By hand.

5.5.2 Approximating functions

The primary use of Taylor series is to conduct approximate calculations of functions we can’t

or don’t want to calculate exactly. This means that when we’re doing something like trying
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to understand a physical or economic model or solve a differential equation, we can pretend

our functions are all polynomials, which are a lot easier to analyze.

Example 5.39. What is n
√
1 + x when x is small?

When we look at this we should immediately think of the binomial series (with α = 1/n).

Thus

n
√
1 + x =

∞∑
k=0

(
1/n

k

)
xk = 1 +

1

n
x+

(1/n)((1− n)/n)

2
x2 + . . .

≈ 1 +
x

n
.

Note that this approximation works better when x is small. But we can, as a rule of thumb,

approximate n
√
2 ≈ n+1

n
.

Example 5.40. Approximate 5
√
x near 32 to degree two.

We have two options. The first is to use the binomial series approximation. It looks like

we want to approximate (32 + x)1/5, which isn’t quite the binomial series which comes from

(1 + x)α; but we can factor out a two and get somtehing that works quite well:

5
√
32 + x = 2(1 + x

32
)1/5 = 2

∞∑
n=0

(
1/5

n

)
xn

= 2 +
2

5
(x/32)− 4

25
(x/32)2 + . . .

(Note this converges when |x/32| < 1 and thus when −32 < x < 32). So we can approximate

5
√
32 + x ≈ 2 +

x

80
− x2

6400
.

This first approach is very common, and the reason we don’t much mind that the binomial

series approximation is specifically centered at 1. If we want to approximate (r+x)α we can

view this as rα(1 + x/r)α and then use the binomial series approximation.

Alternately, we could compute the Taylor polynomial anew, centered at 32:

f(x) = 5
√
x f(32) = 2

f ′(x) =
1

5
x−4/5 f ′(32) =

1

80

f ′′(x) =
−4

25
x−9/5 f ′′(32) =

−1

3200

and thus

√
x =

∞∑
n=0

f (n)(32)

n!
xn

≈ 2 +
x

80
− x2

3200 · 2
.
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Either way, we can estimate 5
√
36 ≈ 2 + 4

80
− 16

6400
= 2 + 1

16
− 1

800
≈ 2.06.

5.5.3 Limits

Taylor series can make computing limits very easy. Heuristically when we calculate a limit

we tend to ask “how many times” the top and bottom go to zero; we can see L’Hospital’s

rule as a way of calculating this. But working with Taylor series makes this idea precise.

Example 5.41. What is limx→0
ex−1−x−x2/2

x3 ?

We could use L’Hospital’s rule here three times, and we did that in section 1.6. But we

can also approach this with Taylor series. We know that ex =
∑∞

n=0
xn

n!
= 1+x+ x2

2
+ x3

3!
+. . . ,

so this is

lim
x→0

x3

3!
+ x4

4!
+ . . .

x3
= lim

x→0

1

3!
+

x

4!
+

x2

5!
+ · · · = 1

6
.

Example 5.42. What is limx→0
sinx
x
?

With the same trick, we have

sinx = x− x3

3!
+

x5

5!
− . . .

sinx

x
= 1− x2

3!
+

x4

5!
− . . .

lim
x→0

sinx

x
= lim

x→0
1− x2

3!
+

x4

5!
+ · · · = 1.

Similarly, we have

lim
x→0

cosx− 1

x2
= lim

x→0

(1− x2

2!
+ x4

4!
− . . . )− 1

x2
= lim

x→0

1

2!
+

x2

4!
− x4

6!
+ · · · = 1

2
.

Remark 5.43. In some sense, this what L’Hôpital’s Rule is “really” doing. When the top and

bottom are both zero, that means the constant terms of each power series are zero. We take

the derivative to shift both power series over one place and then try comparing the linear

terms. Then the quadratic, etc.

Notice that this is very like how we handle all limits as x → ∞. In that case, we only

have to care about the highest-degree term, and we can ignore all the others. Here, if x → a,

we only have to care about the lowest-degree term of the Taylor expansion around a.

5.5.4 Integration with Taylor Series

We can also use Taylor series to make difficult integrals easy.
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Example 5.44. What is the integral of x6 cosx?

We can do this with integration by parts, but it’s tedious. Instead, we calculate:

cosx =
∞∑
n=0

(−1)n
x2n

2n!

x6 cosx =
∞∑
n=0

(−1)n
x2n+6

2n!∫
x6 cosx dx =

∞∑
n=0

(−1)n
x2n+7

(2n+ 7)(2n!)
+ C.

Example 5.45 (Recitation). There are some integrals that simply cannot be computed

by normal means. I’v ementioned a few times that we can’t represent
∫
e−x2

dx with “ele-

mentary” functions. But the integral is very important; any time you’re dealing with, for

instance, a normal distribution, the integral of e−x2
is lurking in the background.

With our new techniques this is easy to handle:

e−x2

=
∞∑
n=0

(−x2)n

n!
=

∞∑
n=0

(−1)n
x2n

n!∫
e−x2

dx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)(n!)
+ C.

Thus we can compute, for instance, that∫ 1

0

e−x2

dx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)(n!)

∣∣∣1
0

=
∞∑
n=0

(−1)n

(2n+ 1)(n!)
≈ .75.

There are still interesting questions in actually computing things with this; our answers

are written in terms of infinite series and we still need ways to approximately sum those

series. But this gives us a way to answer the questions at all.

Remark 5.46. A technique of complex analysis called “contour integration” tells us that∫ +∞
−∞ e−x2

dx =
√
π. (I told you π shows up everywhere for no reason). From this fact it’s

not too hard to show that
∫ +∞
−∞ e−x2/2 dx =

√
2π, and thus that

∫ +∞
−∞

1√
2π
e−x2/2 dx = 1.

This is why the standard bell curve (with mean zero and standard deviation 1) is given

by the probability density function f(x) = 1√
2π
e−x2/2; the total probability of something

happening has to be exactly one. We can generalize this to a normal distribution with mean

µ and standard deviation σ, which has probability density function

f(x) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

.
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Figure 5.12: Left:
∫ 1

0
e−x2

dx. Right: The probability of landing within one standard devia-

tion of the mean.

This still has total integral one. But there’s still no elementary antiderivative to this function,

so if we want to compute, say, the probability of an output between −1 and 1 as in figure

5.12 we still need to use some sort of Taylor series argument to approximate the probability.

5.5.5 Maxima and Minima

Taylor series give us another way to think about what we’re doing when we look for maxima

and minima of functions. We can approximate any (reasonable) function with Taylor poly-

nomials. So first think about what happens when we approximate with a linear function.

If the linear function is sloping upwards or downwards, then our function doesn’t have a

maximum or a minimum. And that’s basically what we said in calculus 1. At a maximum,

T1 needs to be constant.

But now think about the second-order Taylor approximation, which will be a parabola.

Since the first-order Taylor approximation was constant, we know we’ll be at the vertex of

a parabola. But this parabola will either open up or down. If our function is approximately

an upwards parabola, we have a minimum; if our function is approximately a downwards

parabola, we have a maximum. And what determines if the parabola opens up or down?

If the leading quadratic term has a positive coefficient, it will open up, and if the leading

quadratic term has a negative coefficient, then it will open down. And that’s exactly the

second derivative test from calculus 1.

But now we can do more! If the second derivative is zero, then the second derivative test

doesn’t give us any information. And that’s because the second-order Taylor polynomial T2

is just a horizontal line: it doesn’t tell us enough. But we can compute the Taylor series

further out.

Example 5.47. Suppose we want to look at f(x) = cos(x2). We see that f ′(x) = −2x sin(x2)
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Figure 5.13: The graph of sin(2x)−x. On the left we have first-order Taylor approximations

at two points, one of which is a maximum. On the right we have second-order Taylor

approximations at two points, which are a maximum and a minimum.

is zero when x = 0. (Also at other points, which we’ll ignore for now.) But the second

derivative is f ′′(x) = −2 sin(x2)−4x2 cos(x), which is also zero, so the second derivative test

doesn’t tell us anything. And a graph of T2(x,0) indeed gives us a horizontal line.

So let’s look at the Taylor series now. We know

cos(x) =
∞∑
n=0

x2n

(2n)!

cos(x2) =
∞∑
n=0

x4n

(2n)!

= 1− x4

2
+

x8

24
+ · · · ≈ 1− x4

2
.

So near zero, we can approximate cos(x2) with a degree-four polynomial, which opens down-

wards.

Figure 5.14: The second-order Taylor expansion on the left isn’t very helpful, but the fourth-

order Taylor expansion shows our function has a maximum at 0..

Example 5.48. But what about the function g(x) = sin(x) − x? Again we’ll find that
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g′(0) = g′′(0) = 0, so the second derivative test is useless. But we know

sin(x) =
∞∑
n=0

x2n+1

(2n+ 1)!

= x− x3

6
+

x5

120
+ . . .

sin(x)− x = −x3

6
+

x5

120
+ · · · ≈ −x3

6
.

Since −x3

6
doesn’t have a maximum or a minimum at 0, sin(x)− x won’t either.

Figure 5.15: The second-order Taylor expansion on the left isn’t very helpful, but the third-

order Taylor expansion on the right shows that this function has no extrema at 0.

5.5.6 Physical Models

Example 5.49 (Pendulums and Clocks). One place we often use Taylor approximations is

in modelling physical systems, such as a pendulum.

We use pendulums in clocks (e.g. grandfather clocks) becaues they keep accurate time.

The principle underlying this is the idea that a given pendulum takes the same amount of

time to complete a swing regardless of the size of that swing.

This is, unfortunately, false. The angular acceleration on a pendulum (that is, how

quickly it changes the angle of rotation) is given by α = −mg
L

sin θ, and thus the position of

the pendulum as a function of time satisfies the differential equation

d2θ

dt2
= − g

L
sin(θ),

where g is the acceleration due to gravity and L is the length of the pendulum. Solving

this differential equation involves a nasty integral that doesn’t have a closed-form answer,

known as an “elliptic integral.” (It’s called this because it’s also the type of integral used to

calculate the circumference of an ellipse).
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But you may notice that most clocks have a long pendulum that only makes small arcs.

When the angle of the pendulum is small, we can use the Taylor series of sin to approximate

sin θ ≈ θ, and then we have α ≈ −mg
L
θ, and the approximate differential equation

d2θ

dt2
≈ − g

L
θ.

You might recognize this as the equation y′′ = −ky from section 3.3.3, that gave simple

harmonic motion. With initial conditions θ(0) = θ0, θ
′(0) = 0, we get the solution θ(t) ≈

θ0 cos
(√

g/Lt
)
, and we see that the time a pendulum takes to complete one swing is T ≈

2π
√
L/g, regardless of the initial position. (The error in this approximation causes a typical

grandfather clock to lose about 15 seconds a day).

If we need to know the answer to more precision, Taylor series still provide a solution. If

we add more terms to our Taylor approximation, we get the formula

T = 2π
√

L/g

(
1 +

θ20
16

+
11

3072
θ40 + . . .

)
.

Here we see that the period of oscillation does in fact depend on the initial angle θ0, but if

this initial angle is about .1 radians and the pendulum is about a meter then the duration

of a swing is about 2 seconds, with an error of roughly a millisecond.

Example 5.50 (Springs in physics). More generally, if you spend more time doing physics,

you’ll discover that almost every system you want to study is modeled as a collection of

springs.

A spring is a system governed by a simple quadratic equation. So any system governed by

a quadratic equation can be treated as a spring. So if you take any system and approximate

it with the second Taylor polynomial, you get something that looks like a spring.

As examples: we often model light interacting with matter by treating the atom as an

electron on a spring. The strength of the chemical bond between two atoms is given by the

Lennard-Jones Potential, which is
(
Rm

r

)12 − 2
(
Rm

r

)6
. If we take the Taylor series centered

at Rm we get −1 + 0r + 72
R2

m
r2 + · · · ≈ 72

R2
m
r2 − 1, which is just a parabola.

As a note: we often refer to this process as “dropping higher order terms”—the constant

term is the order-0 term; the linear term is the order-1 term; we have dropped every term

of order higher than 2. We sometimes abbreviate even further and call them the H.O.T.

Example 5.51 (Relativity). The last example we want to do concerns special relativity.

Relativity includes a number of interesting phenomena that occur when your velocity is
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relatively large compared to the speed of light. But we know that at low velocities, special

relativity should “look like” Newtonian mechanics.

Most of the relativity equations feature a variable γ, where γ = 1√
1−(v/c)2

. We’d like to

use the binomial expansion, so we write

γ = (1− (v/c)2)−1/2 ≈ 1 +
−1

2
(−(v/c)2) = 1 +

1

2

v2

c2

is the first-order Taylor approximation to γ. It should be accurate when v/c is small–that

is, when our velocity is very small relative to the speed of light.

Famously, the energy of an object at rest is given by E = mc2. Less famously, the energy

of an object in motion is given by E = mc2γ; when v = 0 then γ = 1 and we get the famous

equation. But what if v is small, but non-zero? We can take the Taylor expansion from

before, and get

E ≈ mc2
(
(1 +

1

2

v2

c2

)
= mc2 +

1

2
mv2.

And the second term is just the usual formula for kinetic energy.

Similarly, the formula for time dilation is T ′ = Tγ. If we take the first-order approxima-

tion, we have T ′ = T + T
2
v2

c2
. But even better, if we take the zeroth-order approximation, we

have γ ≈ 1 and thus T ′ ≈ T . This tells us that at low velocities, time dilation is negligible.

5.6 Bonus Taylor Series Fun

5.6.1 Failure Modes of Taylor Series

Sadly, while Taylor series are awesome, they don’t always work. Consider the function

defined by f(x) = e−1/x2
and f(0) = 0. This function is continuous and in fact differentiable

at 0:

lim
h→0

f(h)− f(0)

h
= lim

h→0

e−1/h2

h
= 0.

We can repeat this work, and we see that f ′′(0) = f ′′′(0) = · · · = f (n)(0) = 0. Thus the

Taylor series is

Tf (x,0) =
∞∑
n=0

0

n!
xn = 0.

But clearly f(x) ̸= 0 when x ̸= 0, so f is equal to its Taylor series only in the trivial case

when x = 0. So just remember: Taylor series don’t always work.

But once we look at the graph, this makes perfect sense:
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Figure 5.16: The graph of e−1/x2
is absurdly flat near 0.

5.6.2 Power Series and Differential Equations

In section 3.4 we talked about solving separable differential equations, but most differential

equations are not separable. There are a lot of tools we can use to solve non-separable

equations, but one approach is to use power series—which basically always works.

Example 5.52. Recall the classic differential equation y′ = y. Suppose the function y(x)

can be represented by a power series. Then we have

y =
∞∑
n=0

aix
i = a0 + a1x+ a2x

2 + . . .

y′ = a1 + 2a2x+ 3a3x
2 + . . .

and since these are the same function, each coefficient has to match up. So we get the system

a1 = a0 a1 = a0

2a2 = a1 a2 = a1/2

3a3 = a2 a3 = a2/3

...
...

So if we know a0, then we can figure out all the other coefficients.

How do we find a0? Well, that’s a choice. Remember any differential equation will wind

up with free constants in the end. But if we take a0 = 1, which seems like a reasonable
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choice, we then get

a1 = a0 = 1

a2 = a1/2 = 1/2

a3 = a2/3 = 1/6

...

an = an−1/n = 1/n!

y = 1 + x+
1

2
x2 +

1

6
x3 + . . .

which is exactly the Taylor series for ex we worked out in section 5.3.

(What happens if we choose a different a0? That just multiplies all the coefficients by a

constant, so if a0 = C then our power series gives us Cex. And we already know that Cex is

the solution to this differential equation!)

Example 5.53. Solve y′′ − 3xy′ + y = 0.

We don’t have any tools for this, so we use Taylor series. Assume y =
∑∞

n=0 cnx
n, and

then we have (
∞∑
n=0

cnx
n

)′′

− 3x

(
∞∑
n=0

cnx
n

)′

+
∞∑
n=0

cnx
n = 0

∞∑
n=0

cnn(n− 1)xn−2 − 3x
∞∑
n=0

cnnx
n−1 +

∞∑
n=0

cnx
n = 0

∞∑
n=0

cn+2(n+ 1)(n+ 2)xn − 3
∞∑
n=0

cnnx
n +

∞∑
n=0

cnx
n = 0

∞∑
n=0

((n+ 1)(n+ 2)cn+2 − 3ncn + cn)x
n = 0

and thus for each n we have

(n+ 1)(n+ 2)cn+2 = (3n− 1)cn

cn+2 =
(3n− 1)cn

(n+ 1)(n+ 2)

as our recurrence relation. As before, we see that our solution must have the form

y =
∞∑
k=0

c0((5)(11) · · · (6k − 1))

(2k)!
x2k +

c1((8)(14) · · · (6k + 2)

(2k + 1)!
x2k+1

= c0

∞∑
k=0

(5)(11) · · · (6k − 1)

(2k)!
x2k + c1

∞∑
k=0

(8)(14) · · · (6k + 2)

(2k + 1)!
x2k+1.
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Example 5.54. In section 5.1 I mentioned the Bessel function

J0(x) =
∞∑
n=0

(−1)nx2n

22n(n!)2
.

This arises naturally as a solution to the differential equation

x2y′′ + xy′ + x2y = 0

which is used to study a lot of physics on cylinders.

5.6.3 Taylor Series and Complex Numbers

Perhaps the most surprising and important fact about the trigonometric power series is the

way they combine. You’ll notice that for both sin and cos, every term looks like xn

n!
but

neither series has all the terms.

Leonhard Euler, around 1740, asked himself what it means to exponentiate an imaginary

number. Since the Taylor series of ex agrees with the function everywhere on the real line, it

makes sense to define ez =
∑∞

n=0
zn

n!
. If we plug in a purely imaginary number ix for x ∈ R,

we see:

eix =
∞∑
n=0

(ix)n

n!
=

∞∑
n=0

i2nx2n

(2n)!
+

∞∑
n=0

i(i)2nx2n+1

(2n+ 1)!

=
∞∑
n=0

(−1)nx2n

(2n)!
+ i

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
= cos(x) + i sin(x).

Thus we obtain Euler’s Formula:

eiθ = cosθ + i sin θ.

As a corollary, we get the statement Euler called the most beautiful in all mathematics:

eiπ = cos(π) + i sin(π) = 1, or

eiπ − 1 = 0.

This statement relates the five most fundamental constants in the complex plane.

But in addition to being really pretty, this also has a geometric interpretation. If we

think about the point cos θ + i sin θ on the complex plane, it has x-coordinate cos θ and

y-coordinate sin θ and is thus the point on the unit circle corresponding to angle θ. (This is

why the unit circle is oriented as it is!)

So in general we can represent any point on the unit circle as eiθ, where θ is the angle

the point makes from the positive x-axis. Further, if we have any complex number z, we can
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represent it in “polar coordinates” by giving its absolute value |z| and its complex argument

θ. Thus for any complex number z, we have

z = |z|ei arg(z).

Another result from this line of thinking is De Moivre’s Formula:

(cos θ + i sin θ)n = cosnθ + i sinnθ.

There are some functions, unfortunately, that don’t behave nearly so nicely, such as the

logarithm. Unlike exp and sin and cos we can’t just extend the power series for log to the

whole complex plane, since it has finite radius of convergence (and an unavoidable pole at

0).

But in fact the problem is deeper. We generally want to define log to be the inverse of

exp, so that log exp z = z for every z. But notice that exp(0) = 1, and also exp(2πi) = 1.

So if we want to define log on the whole complex plane we must have log 1 = 0 and also

log 1 = 2πi and this is obviously a problem, since functions can’t have multiple outputs.

We in fact have infinitely many numbers z with ez = 1, or in fact any complex number you

choose (except 0; log 0 is never defined).

We solve this by choosing a “branch,” which basically corresponds to which complex

arguments we allow; we will typically require our arguments to be in (−π, π]; this is called

the “principal value” of the argument. (Notice this is similar to the way we require arcsinx

to be in [−π, π] in section 1.5). Notice also that in this case, we aren’t really happy at

negative real numbers–there’s a huge jump discontinuity there in the complex argument.

There is another option, which avoids this discontinuity, and which I mention mainly

because it’s cool. We can define what’s called a Riemann Surface, which is a two-dimensional

surface that we can think of as sitting in three-dimensional space. In this case our Riemann

surface looks like a giant helical Archimedes Screw.

This surface “covers” the complex plane with infinitely many “sheets.” The logarithm is

a function defined on this surface; which sheet we are in tells us which “branch” the argument

should be in, and other than that the logarithm is defined as it would be for the point of the

complex plane “under” our surface. Thus the logarithm of a point on one sheet would be 0,

and the logarithm of the point one sheet above it is 2πi, and if we go up another sheet we

get 4πi, and so on. See figure 5.17 for a sketch of what this might look like.

This behavior also occurs with functions like n
√
z. Since every (non-zero) number has

two square roots, the square root function is “doubly ramified” or a “two-fold cover” of
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Figure 5.17: The Riemann surface corresponding to the complex logarithm

the complex plane. The nth-root function is an n-fold cover. They are, in fact, essentially

the same picture as the logarithm picture, but with only finitely many sheets, which wrap

around and join up. By convention, we put the discontinuity still on the negative real line.

We can see an attempted picture in figure 5.18.

Figure 5.18: The Riemann surface corresponding to the square root function

Special attention should be paid to the idea of an “nth root of unity”, where “unity” is

just a fancy word for “one.” We know that a number has two square roots; for instance the

number one has 1 and −1 as square roots. By the same logic, any number should have n

distinct nth roots.
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A little creativity shows that the nth roots of unity are the numbers are e2πik/n, since(
e2πik/n

)n
= e2πik =

(
e2πi
)k

= 1k = 1.

These are points spaced evenly around the unit circle. They are very useful in creating

functions and other operations that have certain types of “periodicity”, which means they

repeat every n times. (The most recognizable periodic function is sin(x), which has a period

of 2 pi.)

The roots of unity are especially useful in conjunction with Fourier series, which give a

useful way of representing a periodic function as an infinite sum of sine and cosine functions.

They are an alternative tool to Taylor series that are useful in situations where Taylor series

don’t work terribly well.

Figure 5.19: Cube Roots and Eighth Roots of Unity

5.7 Double Bonus: Real Fourier Series

We’ve seen that we can represent many functions as a power series, an infinite sum of

multiples of powers of x. But some functions are hard to represent this way, and we want

other tools. In particular we can represent a function as an infinite sum of trigonometric

functions.

For this discussion we’ll confine ourselves to real functions on the interval [−π, π]. (The

same idea works for functions on any closed interval, but it’s easier to talk about just this

particular interval for right now. Also, π has popped up again for no reason. Hi, π!)

Definition 5.55. Let f be a function on the interval [−π, π). Then the Fourier series of f
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is given by

f∞(x) =
C

2
+

∞∑
n=1

(an sin(nx) + bn cos(nx))

where

C = 2⟨f(x),1⟩ = 1

π

∫ π

−π

f(x) dx

an = 2⟨f(x), sin(nx)⟩ = 1

π

∫ π

−π

f(x) sin(nx) dx

bn = 2⟨f(x), cos(nx)⟩ = 1

π

∫ π

−π

f(x) cos(nx) dx.

For Taylor series we could match things up by taking derivatives; to find Fourier series

coefficients we instead compute integrals. That makes the computations much nastier! But

the computations are doable, and they make sense because the integral of one term times a

different term is always zero.

Before we dive into computations to prove this, let’s think about why we should expect

it to be true. A sin or cos function passes through a complete cycle between −π an π, so

the positive bits will exactly cancel out the negative bits. When we multiply two different

sin or cos functions, they don’t correlate with each other—each one passes through cycles at

a different rate from the others, so the cycles don’t reinforce or cancel out. Thus we’ll still

have exactly as much on top as we do on bottom, and the integrals should be zero.

Proof. We use the notation ⟨f,g⟩ to represent 1
2π

∫ π

−π
f(x)g(x) dx.

2π⟨1, sin(nx)⟩ =
∫ π

−π

sin(nx) dx =
− cos(nx)

n

∣∣∣∣π
−π

=
1

n
− 1

n
= 0.

⟨1, cos(nx)⟩ =
∫ π

−π

cos(nx) dx =
sin(nx)

n

∣∣∣∣π
−π

= 0− 0 = 0.

The products of the sin and cos functions are a bit trickier.

⟨sin(nx), sin(mx)⟩ =
∫ π

−π

sin(nx) sin(mx) dx

= −cos(nx)

n
sin(mx)

∣∣∣∣π
−π

+

∫ π

−π

m

n
cos(nx) cos(mx) dx

= 0 +
m

n2
sin(nx) cos(mx)

∣∣∣π
−π

+

∫ π

−π

m2

n2
sin(nx) sin(mx) dx

0 =

(
m2

n2
− 1

)∫ π

−π

sin(nx) sin(mx)
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As long as m2

n2 ̸= 1 this implies that ⟨sin(nx) sin(mx)⟩ = 0. For positive integers m,n, this

holds whenever m ̸= n. In contrast∫ π

−π

sin2(nx) dx =

∫ π

−π

1− cos(2x)

2
dx

=

(
x

2
− sin(2nx)

4

)∣∣∣∣π
−π

=

(
π

2
− −π

2

)
= π.

⟨sin(nx), sin(nx)⟩ = 1

2π
· π =

1

2
.

Similar arguments work for ⟨cos(nx), sin(mx)⟩ and ⟨cos(nx), cos(mx)⟩.

Theorem 5.56. Suppose f is a continous function with continuous derivative, except for

finitely many points, on [−π, π). Then f(x) is equal to its Fourier series except for at finitely

many points.

Notice that unlike in the case of Taylor series, this always works. every continuous

function is (essentially) equal to its Fourier series.

What does this mean? It means that if we have a function on [−π, π) then we can

look at it as being composed of a bunch of different “waves” of different frequencies, and

the coefficients tell us how large each wave is. (The constant term tells us the average

value around which the waves are oscillating). Further, a Fourier series is always a periodic

function on the whole real line. So any periodic function can be viewed as a Fourier series,

and this technology allows us to see it as composed of many smaller simpler waves. We’ll

return to the physics and geometry of this soon.

Example 5.57. Let f(x) : [−π, π) → R be given by f(x) = x. The periodic version of this

function is a “sawtooth wave.” Then we have:

C

2
= ⟨f(x), 1⟩

=
1

2π

∫ π

−π

f(x)dx

=
1

2π

∫ π

−π

xdx

=
1

2π
x2|π−π = 0.
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an = 2⟨f(x), sin(nx)⟩

=
1

π

∫ π

−π

x sin(nx)dx

=
1

π

(
−x · cosnx

n
|π−π +

∫ π

−π

cos(nx)

n
dx

)
=

1

π

(
−π cos(nπ)− π cos(−nπ)

n

)
= −2

cos(nπ)

n
= (−1)n+1 2

n
.

bn = 2⟨f(x), cos(nx)⟩

=
1

π

∫ π

−π

x cos(nx)dx

=
1

π

(
x · sinnx

n
|π−π −

∫ π

−π

sin(nx)

n
dx

)
=

1

π

(
π sin(nπ) + π sin(−nπ)

n

)
= 0.

Thus the sawtooth wave has Fourier series

f(x) =
∞∑
n=1

(−1)n+1 2

n
sin(nx).

Example 5.58. Define sgn : [−π, π] → R by f(x) = −1 if x < 0 and f(x) = 1 if x ≥ 0.

(Made periodic, this is a “square wave”).

C

2
= ⟨sgn(x), 1/2⟩

=
1

2π

∫ π

−π

sgn(x)dx = 0.
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an =
2

2π
⟨sgn(x), sin(nx)⟩

=
1

π

(∫ 0

−π

− sin(nx)dx+

∫ π

0

sin(nx)dx

)
=

1

π

(
cos(nx)

n
|0−π −

cos(nx)

n
|π0
)

=
1

nπ
(cos(0)− cos(−nπ)− cos(nπ) + cos(0)

=
2

nπ
(cos(0)− cos(nπ))

which equals r
nπ

if n is odd and 0 if n is even.

bn =
2

2π
⟨sgn(x), cos(nx)⟩

=
1

π

(∫ 0

−π

− cos(nx)dx+

∫ π

0

cos(nx)dx

)
=

1

π

(
− sin(nx)

n
|0−π +

sin(nx)

n
|π0
)

=
1

πn
(− sin(0) + sin(−nπ) + sin(nπ)− sin(0)) = 0.

Thus

sgn(x) =
∞∑
n=0

4

(2n+ 1)π
sin((2n+ 1)x).

http://jaydaigle.net/teaching/courses/2026-spring-1232-13/ 154

http://jaydaigle.net/teaching/courses/2026-spring-1232-13/

	Power Series and Taylor Series
	Power Series
	Power Series as Functions
	Calculus of power series

	Taylor Series
	Computing Taylor Series
	Trigonometry and Exponentials
	The Binomial Series

	Applications of Taylor Series
	Calculating constants
	Approximating functions
	Limits
	Integration with Taylor Series
	Maxima and Minima
	Physical Models

	Bonus Taylor Series Fun
	Failure Modes of Taylor Series
	Power Series and Differential Equations
	Taylor Series and Complex Numbers

	Double Bonus: Real Fourier Series


