I am currently most interested in the study of nonunique factorization problems in numerical monoids. Numerical monoids have a rich theory of factorization that is accessible to students with an undergraduate background in mathematics.
My doctoral research focused on using the techniques of $p$adic Hodge theory and $(\phi, \Gamma)$modules to study a number of arithmetic principles. In particular, there is a wonderful conjecture of Bloch and Kato which generalizes both the analytic Class Number Formula and the Birch and SwinnertonDyer conjecture. My work with Matthias Flach has strengthened the evidence for this conjecture in the case of Tate motives over number fields.
Papers:

On the local Tamagawa number conjecture for Tate motives over tamely ramified fields, Algebra and Number Theory, 10(6):1221–1275, 2016 (with Matthias Flach)
 Delta sets of numerical monoids using nonminimal sets of generators Comm. Algebra 38 (2010), no. 7, 2622–2634. (with Scott Chapman, Rolf Hoyer, and Nathan Kaplan).
 Sampling Lissajous and Fourier knots Experiment. Math. 18 (2009), no. 4, 481–497 (with Adam Boocher, Jim Hoste, and Wenjing Zheng).
Doctoral Thesis:
 "On the local Tamagawa number conjecture for Tate motives", advised by Matthias Flach (2014).
Undergraduate Thesis:
 Determining unitary equivalence to a $3 \times 3$ complex symmetric matrix from the upper triangular form (pdf), advised by Stephan Garcia (2008).